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1 Introduction

Momentum and value strategies underlie much of active management. Momentum strategies ex-

trapolate recent trends, buying assets whose price has increased in the recent past and selling

assets whose price has decreased. Value strategies exploit differences between price and measures

of fundamental value, e.g, earnings or book equity, buying assets whose price is low relative to

fundamental value and selling assets whose price is high. A large empirical literature documents

that momentum and value strategies are profitable.1

The design of momentum and value strategies has mainly been driven by the empirical findings,

while theory has provided little guidance. A theoretical perspective could be valuable, however,

both to shed light on why the strategies are profitable and to suggest possible improvements in

the way they are implemented. Theoretical guidance has been limited partly because of a lack of

theories explaining the simultaneous presence of momentum and value effects. One could alterna-

tively perform a partial-equilibrium analysis by specifying exogenous price processes that exhibit

these effects. But since momentum and value strategies typically involve multiple assets, such

a specification would involve many degrees of freedom, which an equilibrium model could help

restrict.

In this paper we study the design and performance of momentum and value strategies within

the theoretical framework of Vayanos and Woolley (VW 2011). In that theory, momentum and

value effects arise because of flows between investment funds. Negative shocks to assets’ funda-

mental values trigger outflows from funds holding those assets. Outflows cause asset sales, which

amplify the shocks’ negative effects. If the outflows are gradual because of, e.g., investor inertia or

institutional constraints, then the amplification is also gradual and momentum effects arise. More-

over, because flows push prices away from fundamental value, value effects also arise. Both effects

arise—and are sizeable in a calibration—despite investors and fund managers being rational.

We employ the model of VW as a laboratory to evaluate the performance of a host of active

strategies. The model allows for multiple risky assets, and hence for the design of elaborate strate-

gies. It also has a tractable linear structure, which allows for closed-form calculations of measures

of strategy performance. We compute Sharpe ratios of various implementations of momentum and

value strategies, of combinations of these strategies, and for general investment horizons.

1Short-run momentum was first documented by Jegadeesh and Titman (1993), and the value effect by Fama and
French (1992). Closely related to the value effect is long-run reversal, first documented by DeBondt and Thaler
(1985). Surveys of the literature include Fama (1991) and Schwert (2003).
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We show that the Sharpe ratio of a strategy depends on how it loads on a time-varying premium

of a risk factor associated with fund flows. We also compute the optimal strategy, and use it as

a benchmark to evaluate momentum and value strategies and their combinations. We further

decompose the Sharpe ratios of momentum and value strategies into intuitive components, whose

relative importance we measure in our calibration.

We calibrate the model using evidence on fund flows and returns from a recent empirical

literature. The calibration is as in VW, and yields static Sharpe ratios of 40% for momentum and

26% for value. We show additionally the following main results:

• Value strategies are less sensitive to implementation than momentum strategies. In particular,

the quality of forecast of fundamental value has only a small effect on the Sharpe ratio of a

value strategy.

• The correlation between momentum and value returns is slightly negative, equal to minus 3%.

Thus, combining momentum and value strategies yields significant diversification benefits, as

shown empirically by Asness, Moskowitz, and Pedersen (2009). The Sharpe ratio of the

optimal combination is 48%.

• The Sharpe ratio of the optimal combination of momentum and value strategies is significantly

smaller than of the overall optimal strategy, which is 61%. Thus, momentum and value

strategies can be improved. This can be done by using information on fund flows.

• Returns of momentum strategies are positively autocorrelated over lags shorter than one year,

and the autocorrelation over longer lags drops to zero. Returns of value strategies are also

positively autocorrelated over lags shorter than one year, but the autocorrelation over longer

lags is negative. Thus, over intervals longer than one year, momentum is a series of i.i.d.

bets, but value exhibits mean reversion.

• The dynamic Sharpe ratio of momentum strategies decreases with the investment horizon

when the horizon is short, and becomes essentially flat after a one-year horizon. The dynamic

Sharpe ratio of value strategies, decreases with the investment horizon when the horizon is

short. As the horizon increases, however, it increases and eventually overtakes the Sharpe

ratio of momentum strategies.

Section 2 provides a brief overview of the VW model, and Section 3 of the main properties

of the equilibrium in the case where information about fund managers’ efficiency is asymmetric.

2



Section 4 computes the Sharpe ratio of a general trading strategy. Section 5 computes the Sharpe

ratio of momentum strategies. We consider two implementations of momentum: one that uses

raw past returns and one that uses risk-adjusted returns. Section 6 computes the Sharpe ratio of

value strategies. We consider four implementations of value, obtained by using raw or risk-adjusted

prices, and a perfect or a crude forecast for expected dividends. Section 7 computes the correlation

between momentum and value strategies, as well as the Sharpe ratio that can be achieved by

combining them. Sections 4-7 concern infinitesimal investment horizons and static Sharpe ratios.

Section 8 extends the analysis to general non-infinitesimal horizons, and computes dynamic Sharpe

ratios.

Behavioral theories of momentum and reversal include Barberis, Shleifer, and Vishny (1998),

Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and Stein (1999), and Barberis and Shleifer

(2003). Rational theories include Albuquerque and Miao (2010), Cespa and Vives (2011), and

Dasgupta, Prat, and Verardo (2011). Our theory has similarities to Barberis and Shleifer (2003)

who emphasize flows across styles rather than across investment funds, and to Dasgupta, Prat,

and Verardo (2011) who emphasize reputation concerns of fund managers. The only paper that

assumes multiple assets, as we do, is Barberis and Shleifer (2003), and it explores implications

for portfolio choice. It does not address, however, any of the issues that we are studying in this

paper, e.g., the robustness of a strategy to implementation, the correlation between strategies,

and the performance over long horizons. Koijen, Rodriguez, and Sbuelz (2006) perform portfolio

optimization for an exogenous price process that exhibits momentum and reversal effects, in the

case of one risky asset.

2 Model

In this section we describe briefly the model of Vayanos and Woolley (VW 2011), referring to VW

for more detailed discussion and motivation of the assumptions. We consider only the case of

asymmetric information because it is under that case that we evaluate the performance of trading

strategies. Time t is continuous and goes from zero to infinity. There are N risky assets and

a riskless asset. We refer to the risky assets as stocks. The riskless asset has an exogenous,

continuously compounded return r. The stocks pay dividends over time, and their prices are

determined endogenously in equilibrium. We denote by Dnt the cumulative dividend per share of

stock n = 1, .., N , by Snt the stock’s price, and by πn the stock’s supply in terms of number of

shares. We specify the stochastic process for dividends later in this section.
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A competitive investor can invest in the riskless asset and in the stocks. The investor can

access the stocks only through two investment funds: a passive fund that tracks mechanically a

market index, and an active fund. We assume that the market index includes a fixed number ηn of

shares of stock n. Thus, if the vectors π ≡ (π1, .., πN ) and η ≡ (η1, .., ηN ) are collinear, the market

index is capitalization-weighted and coincides with the market portfolio.

To ensure that the active fund can add value over the index fund, we assume that the market

index differs from the true market portfolio characterizing equilibrium asset returns. This can

be because the market index does not include some stocks. Alternatively, the market index can

coincide with the market portfolio, but unmodelled buy-and-hold investors, such as firms’ managers

or founding families, can hold a portfolio different from the market portfolio. That is, buy-and-hold

investors hold π̂n shares of stock n, and the vectors π and π̂ ≡ (π̂1, .., π̂N ) are not collinear. To

nest the two cases, we define a vector θ ≡ (θ1, .., θN ) to coincide with π in the first case and π − π̂

in the second. The vector θ represents the residual supply left over from buy-and-hold investors,

and is the true market portfolio characterizing equilibrium asset returns. We assume that θ is not

collinear with the market index η, and set

∆ ≡ θΣθ′ηΣη′ − (ηΣθ′)2 > 0.

The investor determines how to allocate her wealth between the riskless asset, the index fund,

and the active fund. She maximizes expected utility of intertemporal consumption. Utility is

exponential, i.e.,

−E
∫ ∞

0
exp(−αct − βt)dt, (2.1)

where α is the coefficient of absolute risk aversion, ct is consumption, and β is the discount rate.

The investor’s control variables are consumption ct and the number of shares xt and yt of the index

and active fund, respectively.

The active fund is run by a competitive manager, who can also invest his personal wealth in

the fund. The manager determines the active portfolio and the allocation of his wealth between the

riskless asset and the fund. He maximizes expected utility of intertemporal consumption. Utility

is exponential, i.e.,

−E
∫ ∞

0
exp(−ᾱc̄t − β̄t)dt, (2.2)
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where ᾱ is the coefficient of absolute risk aversion, c̄t is consumption, and β̄ is the discount rate.

The manager’s control variables are consumption c̄t, the number of shares ȳt of the active fund, and

the active portfolio zt ≡ (z1t, .., zNt), where znt denotes the number of shares of stock n included in

one share of the active fund. The assumption that the manager can invest his personal wealth in

the active fund is for parsimony: in addition to choosing the active portfolio, the manager acts as

trading counterparty to the investor’s flows, and this eliminates the need to introduce additional

agents into the model. The manager in our model can be viewed as the aggregate of all agents

absorbing the investor’s flows.

To ensure that the investor has a motive to move across funds and generate flows, we assume

that she suffers a time-varying cost from investing in the active fund. This cost drives a wedge

between the investor’s net return from the fund, and the gross return made of the dividends and

capital gains of the stocks held by the fund. The interpretation of the cost that best fits our model

is as a managerial perk, although other interpretations such as managerial ability could fit more

complicated versions of the model. The index fund entails no cost, so its gross and net returns

coincide.

We model the cost as a flow (i.e., the cost between t and t+ dt is of order dt), and assume that

the flow cost is proportional to the number of shares yt that the investor holds in the active fund.

We denote the coefficient of proportionality by Ct and assume that it follows the process

dCt = κ(C̄ − Ct)dt+ sdBC
t , (2.3)

where κ is a mean-reversion parameter, C̄ is a long-run mean, s is a positive scalar, and BC
t is a

Brownian motion.

To remain consistent with the managerial-perk interpretation of the cost, we allow the manager

to derive a benefit from the investor’s participation in the active fund. We model the benefit in

the same manner as the cost, i.e., a flow which is proportional to the number of shares yt that the

investor holds in the active fund. If the cost is a perk that the manager can extract efficiently,

then the coefficient of proportionality for the benefit is Ct. We allow more generally the coefficient

of proportionality to be λCt, where λ ≥ 0 is a constant that an be interpreted as the efficiency of

perk extraction. Varying λ generates a rich specification of the manager’s objective. When λ = 0,

the manager cares about fund performance only through his personal investment in the fund, and

his objective is similar to the fund investor’s. When instead λ > 0, the manager is also concerned

with commercial risk, i.e., the risk that the investor might reduce her participation in the fund.

We define one share of the fund by the requirement that its market value equals the equilibrium
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market value of the entire fund. Under this definition, the number of fund shares held by the investor

and the manager in equilibrium sum to one, i.e.,

yt + ȳt = 1. (2.4)

We define one share of the index fund to coincide with the market index η.

We denote the vector of stocks’ cumulative dividends by Dt ≡ (D1t, .., DNt)
′ and the vector of

stock prices by St ≡ (S1t, .., SNt)
′, where v′ denotes the transpose of the vector v. We assume that

Dt follows the process

dDt = Ftdt+ σdBD
t , (2.5)

where Ft ≡ (F1t, .., FNt)
′ is a time-varying drift equal to the expected dividend rate, σ is a constant

matrix of diffusion coefficients, and BD
t is a d-dimensional Brownian motion independent of BC

t .

We assume a time-varying expected dividend Ft so that prices do not reveal the cost Ct to the

investor perfectly. We model time-variation in Ft through the process

dFt = κ(F̄ − Ft)dt+ ϕσdBF
t (2.6)

where the mean-reversion parameter κ is the same as for Ct for simplicity, F̄ is a long-run mean, ϕ

is a positive scalar, and BF
t is a d-dimensional Brownian motion independent of BC

t and BD
t . The

diffusion matrices for Dt and Ft are proportional for simplicity. We set Σ ≡ σσ′.

We assume that the investor can adjust her active-fund holdings yt to new information only

gradually. Gradual adjustment can result from contractual restrictions or institutional decision

lags. We model these frictions as a flow cost ψ(dyt/dt)
2/2 that the investor must incur when

changing yt.

The manager observes all the variables in the model. The investor observes the returns and

share prices of the index and active funds, but not the same variables for the individual stocks. She

does not observe Ct and Ft.

3 Equilibrium

In this section we describe briefly the equilibrium of Vayanos and Woolley (VW 2011) in the case

of asymmetric information. The equilibrium has with the following characteristics. The investor’s
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conditional distribution of Ct is normal with mean Ĉt. Stock prices are

St =
F̄

r
+
Ft − F̄

r + κ
− (a0 + a1Ĉt + a2Ct + a3yt), (3.1)

where (a0, a1, a2, a3) are constant vectors. The first two terms in (3.1) are the present value of

expected dividends, discounted at the riskless rate r, and the last term is a risk discount linear in

the variables (Ĉt, Ct, yt). The effects of (Ĉt, Ct, yt) are described by the vectors (a1, a2, a3). These

vectors are

ai = γiΣp
′
f (3.2)

for i = 1, 2, 3, where (γ1, γ2, γ3) are constants (scalars) and

pf ≡ θ − ηΣθ′

ηΣη′
η (3.3)

is the “flow portfolio.” The flow portfolio characterizes the flows that the investor generates when

moving across funds. For example, when moving out of the active and into the index fund, she

sells a slice of the flow portfolio. Indeed, the flows that she generates amount to selling stocks

that the active fund overweights relative to the index fund, and buying stocks that the active fund

underweights. Since market clearing requires that the active fund holds the true market portfolio

θ net of the investor’s holdings of the market index η, the stocks that the active fund overweights

correspond to large components of θ relative to η, and hence to long positions in the flow portfolio.

Conversely, the stocks that the active fund underweights correspond to short positions.

Eqs. (3.1) and (3.2) indicate that changes in (Ĉt, Ct, yt) affect stock prices through the covari-

ance with the flow portfolio. Consider, for example, an increase in the investor’s holdings yt of the

active fund. This corresponds to a flow out of the index and into the active fund, and hence to a

purchase of a slice of the flow portfolio by the investor. Market clearing requires that the manager

takes the other side of this transaction (by changing his personal stake in the active fund). For the

manager to be induced to do so, the expected returns of stocks that covary positively with the flow

portfolio must decrease, and those of stocks that covary negatively must increase. Therefore, the

price of the former stocks increases and of the latter decreases. This means that the constant γ3

in (3.2) is negative, as confirmed in Proposition 3.1. The constants γ1 and γ2 are instead positive

because increases in Ĉt and Ct correspond to outflows from the active fund. Indeed, an increase

in the investor’s estimate Ĉt of the cost Ct reduces her target holdings of the active fund, and
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corresponds to future outflows. And an increase in Ct forecasts a reduction of the investor’s target

holdings of the active fund in the future, as the investor learns that Ct has increased.

The dynamics of yt in the equilibrium derived in VW are

vt ≡
dyt
dt

= b0 − b1Ĉt − b2yt, (3.4)

where (b0, b1, b2) are constants. Intuitively, the investor’s holdings yt of the active fund should

evolve towards a time-varying target, which is decreasing in Ĉt. Thus, the constants b1 and b2 are

positive, as confirmed in Proposition 3.1. The dynamics of Ĉt are

dĈt =κ(C̄ − Ĉt)dt− β1

{
pf [dDt − Et(dDt)]− (Ct − Ĉt)dt

}
− β2pf

[
dSt + a1dĈt + a3dyt − Et(dSt + a1dĈt + a3dyt)

]
, (3.5)

where

β1 ≡ T

[
1− (r + k)

γ2∆

ηΣη′

]
ηΣη′

∆
, (3.6)

β2 ≡
s2γ2

ϕ2

(r+κ)2
+

s2γ2
2∆

ηΣη′

, (3.7)

and T denotes the investor’s conditional variance of Ct, which is constant in the steady state reached

for t → ∞. Eq. (3.5) characterizes the investor’s dynamic learning about Ct, and is derived using

Kalman filtering. The investor learns about Ct by observing the returns and prices of the index

and active funds. Since returns are made of dividends and capital gains, observing fund returns

and prices is equivalent to observing fund dividends and prices. The terms in β1 and β2 in (3.5)

represent the learning from dividends and prices, respectively. In the case of dividends, the investor

raises her estimate of Ct if the net dividends of the active fund are low relative to those of the index

fund. This is because high Ct lowers the net dividends of the active fund. In the case of prices, the

investor raises her estimate of Ct if the price of the index fund is low relative to that of the index

fund. This is because high Ct forecasts future outflows by the active fund and this lowers the price

of the active portfolio.

VW refer to an equilibrium satisfying (3.1), (3.2) and (3.4) as linear, and show that a unique

linear equilibrium exists when the diffusion coefficient s of Ct is small. Moreover, numerical solutions

for general values of s yield a linear equilibrium with the same properties as in Proposition 3.1.
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Proposition 3.1 For small s, there exists a unique linear equilibrium. The constants (b1, b2, γ1, γ2)

are positive and the constant γ3 is negative.

The properties of the equilibrium that are relevant for our analysis concern the comovement of

stock returns, the cross section of expected returns, and the predictability of returns. We consider

returns per share in excess of the riskless asset, denote them by dRt ≡ dDt+ dSt− rStdt, and refer

to them simply as returns.

Proposition 3.2 shows that the covariance matrix of stock returns is the sum of a fundamental

covariance, driven purely by cashflows, and a non-fundamental covariance, introduced by fund

flows. The non-fundamental covariance between a pair of stocks is proportional to the product of

the covariances between each stock in the pair and the flow portfolio. It is thus positive for stock

pairs whose covariance with the flow portfolio has the same sign, and negative otherwise. Intuitively,

two stocks move in the same direction in response to fund flows if they are both overweighted or

both underweighted by the active fund, but move in opposite directions if one is overweighted and

the other underweighted.

Proposition 3.2 The covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(
fΣ+ kΣp′fpfΣ

)
dt, (3.8)

where f ≡ 1 + ϕ2/(r + κ)2 and k are positive constants. The matrix fΣdt is the fundamental

covariance, driven purely by cashflows, and the matrix kΣp′fpfΣdt is the non-fundamental covari-

ance, introduced by fund flows. The non-fundamental covariance is positive for stock pairs whose

covariance with the flow portfolio has the same sign, and is negative otherwise.

Proposition 3.3 shows that expected returns are given by a two-factor model, with the factors

being the market index η and the flow portfolio pf . Changes in (Ĉt, Ct, yt) affect expected returns

through the factor risk premium Λt associated to the flow portfolio. For example, an increase in yt

lowers Λt since γ
R
3 < 0. It thus lowers the expected returns of stocks that covary positively with

the flow portfolio and raises those of stocks that covary negatively.

Proposition 3.3 Stocks’ expected returns are given by the two-factor model

Et(dRt) =
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Covt(dRt, ηdRt) + ΛtCovt(dRt, pfdRt), (3.9)
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with the factors being the market index and the flow portfolio. The factor risk premium Λt associated

to the flow portfolio is

Λt = rᾱ+
1

f + k∆
ηΣη′

(
γR1 Ĉt + γR2 Ct + γR3 yt − k1q̄1 − k2q̄2

)
, (3.10)

where (γR1 , γ
R
2 , γ

R
3 , k1, k2, q̄1, q̄2) are constants. For small s, the constants (γR1 , γ

R
3 ) are negative and

the constant γR2 is positive.

Propositions 3.4 and 3.5 study return predictability based on cashflows and past returns, re-

spectively. A stock’s cashflow shock or return predicts positively the stock’s subsequent return in

the short run, implying short-run momentum, and negatively the return in the long run, implying

long-run reversal.

Proposition 3.4 The covariance between cashflow shocks (dDt, dFt) at time t and returns at time

t′ > t is given by

Covt(dDt, dR
′
t′) =

β1(r + κ)Covt(dFt, dR
′
t′)

β2ϕ2
=
[
χD
1 e

−(κ+ρ)(t′−t) + χD
2 e

−b2(t′−t)
]
Σp′fpfΣdtdt

′,

(3.11)

where (χD
1 , χ

D
2 , ρ) are constants. For small s, the term in the square bracket of (3.11) is positive if

t′ − t < ûD and negative if t′ − t > ûD, for a threshold ûD > 0. A stock’s cashflow shocks predict

positively the stock’s subsequent return for t′ − t < ûD (short-run momentum) and negatively for

t′ − t > ûD (long-run reversal). They predict in the same manner the subsequent return of another

stock when the covariance between each stock in the pair and the flow portfolio has the same sign,

and in the opposite manner otherwise.

Proposition 3.5 The covariance between stock returns at time t and those at time t′ > t is

Covt(dRt, dR
′
t′) =

[
χ1e

−(κ+ρ)(t′−t) + χ2e
−κ(t′−t) + χ3e

−b2(t′−t)
]
Σp′fpfΣdtdt

′, (3.12)

where (χ1, χ2, χ3) are constants. For small s, the term in the square bracket of (3.12) is positive

if t′ − t < û and negative if t′ − t > û, for a threshold û > 0. A stock’s return predicts positively

the stock’s subsequent return for t′ − t < û (short-run momentum) and negatively for t′ − t > û
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(long-run reversal). It predicts in the same manner the subsequent return of another stock when

the covariance between each stock in the pair and the flow portfolio has the same sign, and in the

opposite manner otherwise.

The intuition for momentum and reversal is as follows. Suppose that a negative cashflow shock

hits a stock that the active fund overweights. Since this lowers the active fund’s performance

relative to the index fund, it raises the investor’s estimate of Ct, and lowers her target holdings of

the active fund. The expectation of future outflows from the active fund lowers the prices of stocks

that the active fund overweights, including the stock hit by the cashflow shock. Momentum arises

if this decline is expected to continue in the short run. Reversal arises because the outflows cause

the prices of the stocks that the active fund overweights to drop relative to fundamental value.

Hence, these stocks’ expected returns eventually rise.

The emergence of momentum is surprising. Indeed, why is the price decline expected to continue

in the short run? And why do rational agents take the other side of the outflows that follow the

cashflow shock, buying assets whose expected returns have decreased?2 This is because of what

we term the “bird in the hand” effect. The assets that experience a price drop and are expected

to continue underperforming in the short run are those that the active fund overweights. The

anticipation of outflows causes these assets to be underpriced and to guarantee agents an attractive

return (bird in the hand) over a long horizon. Agents could earn an even more attractive return

on average (two birds in the bush), by buying these assets after the outflows occur. This, however,

exposes them to the risk that the outflows might not occur, in which case the assets would cease to

be underpriced. In summary, short-run expected underperformance is possible because of long-run

expected overperformance; and more generally, momentum is possible because of the subsequent

reversal.

The bird-in-the-hand effect can be illustrated in the following simple example. An asset is

expected to pay off 100 in Period 2. The asset price is 92 in Period 0, and 80 or 100 in Period

1 with equal probabilities. Buying the asset in Period 0 earns an investor a two-period expected

capital gain of 8. Buying in Period 1 earns an expected capital gain of 20 if the price is 80 and

0 if the price is 100. A risk-averse agent might prefer earning 8 rather than 20 or 0 with equal

probabilities, even though the expected capital gain between Periods 0 and 1 is negative.

2In our model, the only agent taking the other side of the investor’s flows is the manager, but this assumption is
only for simplicity.
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4 Performance of Trading Strategies

In this section we define a performance measure for general trading strategies. Consider a trading

strategy consisting of a vector of weights wt ≡ (w1t, .., wNt), where wnt is the number of shares

invested in stock n at time t. Part of the strategy’s expected return is compensation for bearing risk

that correlates with the market index. We focus on the remainder by index-adjusting the strategy,

i.e., combining it with a position in the index such that the covariance between the overall position

and the index is zero. The index-adjusted strategy is

ŵt ≡ wt −
Covt(wtdRt, ηdRt)

V art(ηdRt)
η. (4.1)

Note that the position in the index can be time-varying, reflecting possible time-variation in the

covariance between the strategy and the index. We measure the performance of the strategy wt by

the Sharpe ratio of its index-adjusted version ŵt.
3 The Sharpe ratio is the ratio of expected return

to standard deviation. We also divide by
√
dt to express the Sharpe ratio in annualized terms,

given that returns are evaluated over an infinitesimal period dt. The Sharpe ratio corresponding

to the strategy wt thus is

SRw ≡ E(ŵtdRt)√
V ar(ŵtdRt)dt

. (4.2)

Proposition 4.1 computes the Sharpe ratio under the prices in the equilibrium of Section 3 and in

the steady state reached for t→ ∞. All subsequent calculations also concern the steady state.

Proposition 4.1 The Sharpe ratio corresponding to the strategy wt is

SRw =

(
f + k∆

ηΣη′

)
E
(
ΛtwtΣp

′
f

)
√
f
[
E(wtΣw′

t)−
E[(wtΣη′)2]

ηΣη′

]
+ kE[(wtΣp′f )

2]

. (4.3)

The use of the Sharpe ratio as a performance measure can be motivated based on portfolio

optimization. Consider an investor with horizon dt and mean-variance preferences, who can invest

3Empirical studies that compute Sharpe ratios of momentum and value strategies typically consider long-short
portfolios with zero initial investment, i.e., require the dollar weights to sum to zero. Our index-adjustment is in a
similar spirit: the weights that sum to zero are the number of shares times the covariance between one share and the
index rather than times the dollar value of one share. We define weights differently because this preserves linearity
and simplifies the algebra.
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in the riskless asset, the market index η and the strategy wt. The investor chooses investments x̂

in the index and ŷ in the strategy to maximize

E(dWt)−
a

2
V ar(dWt), (4.4)

subject to the budget constraint

dWt = rWtdt+ x̂ηdRt + ŷwtdRt

= rWtdt+ ˆ̂xηdRt + ŷŵtdRt, (4.5)

where a is the investor’s risk-aversion coefficient,

ˆ̂x ≡ x̂+ ŷ
Covt(wtdRt, ηdRt)

V art(ηdRt)

is the investor’s overall exposure to the index, and the second step in (4.5) follows from (4.1). Sub-

stituting (4.5) into (4.4), and noting that (ηdRt, ŵtdRt) are orthogonal, we can write the investor’s

maximization problem as

max
ˆ̂x,ŷ

{
ˆ̂xE(ηdRt) + ŷE(ŵtdRt)−

a

2

[
ˆ̂x2V ar(ηdRt) + ŷ2V ar(ŵtdRt)

]}
. (4.6)

Lemma 4.1 The solution to the maximization problem (4.6) is

ˆ̂x =
E(ηdRt)

aV ar(ηdRt)
, (4.7)

ŷ =
E(ŵtdRt)

aV ar(ŵtdRt)
. (4.8)

The investor’s maximum utility is

E(ηdRt)
2

2aV ar(ηdRt)
+
SR2

wdt

2a
. (4.9)

The investor’s maximum utility depends on the strategy’s characteristics only through the

Sharpe ratio, and is increasing in the ratio’s square. Hence, if the investor must choose between

two strategies with positive Sharpe ratios, i.e., where the optimal investment is a long rather than

a short position, he prefers the one with the largest ratio. Proposition 4.2 determines a strategy

that maximizes the Sharpe ratio.
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Proposition 4.2 The Sharpe ratio in (4.3) is maximized for the strategy wt = Λtpf . The maximum

value of the Sharpe ratio is

max
wt

SRw =

√(
f +

k∆

ηΣη′

)
∆

ηΣη′
E(Λ2

t ). (4.10)

The intuition for the optimal strategy can be derived from the two-factor model of Proposition

3.3. A strategy’s expected return consists of a compensation for bearing risk that correlates with

the index, and a compensation for bearing risk that correlates with the flow portfolio. Index

adjustment isolates the latter component. Maximizing that component per unit of risk requires

holding the flow portfolio since this eliminates uncompensated risk. Moreover, investment in the

flow portfolio should be larger when the premium Λt associated to that risk factor is high.

Lemma 4.1 and Proposition 4.2 imply that the strategy wt = Λpf maximizes the utility of an

investor with horizon dt and mean-variance preferences, who can invest in the riskless asset, the

market index and the strategy. Note that since the set of strategies is unrestricted, the investor’s

maximization problem is equivalent to choosing freely investments in all stocks, knowing perfectly

the structure of the equilibrium in Section 3.

The investor’s optimal strategy can be contrasted to that of the manager in Section 3. Both

investor and manager know perfectly the structure of the equilibrium and can choose freely invest-

ments in all assets to maximize their utility. The key difference between them is in their horizon:

the manager has a long horizon since he maximizes the utility (2.2) over intertemporal consump-

tion, while the investor has a short horizon since she maximizes the utility (4.4) over instantaneous

changes in wealth. The difference in horizon implies a difference in optimal strategies: the manager

always longs the flow portfolio, as is required from market clearing, while the investor can short it

if Λt < 0.

The investment in the flow portfolio by the optimal strategy varies over time with Λt. Since

time-variation in Λt is caused by fund flows, past and anticipated, the optimal strategy effectively

exploits mispricing generated by flows. Momentum and value strategies exploit aspects of the

flow-generated mispricing, and are imperfect approximations of the optimal strategy.
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5 Momentum Strategies

We consider two implementations of a momentum strategy:

(
wM
t

)′ ≡ ∫ t

t−τ
dRu, (5.1)

(
wM̂
t

)′
≡
∫ t

t−τ
dR̂u, (5.2)

where

dR̂t ≡ dRt −
Covt(dRt, ηdRt)

V art(ηdRt)
ηdRt. (5.3)

Under both implementations, a stock’s momentum weight increases linearly in the stock’s cumu-

lative past return over the window [t − τ, t] for some τ > 0. The two implementations differ

in the measure of past returns used to construct momentum weights: raw returns in (5.1) and

index-adjusted returns in (5.2). Momentum weights are typically constructed using raw returns

in empirical work and investment practice. We also consider index-adjusted returns because the

calculations are simpler and because the Sharpe ratio can be higher than with raw returns.

We introduce some notation that we also use in subsequent sections. For scalars (ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3)

and a function ν(ω, T ), we define the function G(ψ1, ψ2, ψ3, T , ν) by

G(ψ1, ψ2, ψ3, T , ν) ≡

−
[
ψ1ν(κ+ ρ, T ) +

ψ3b1
κ+ ρ− b2

(ν(κ+ ρ, T )− ν(b2, T ))

]
β1

(
1 +

β1γ1∆

ηΣη′

)

−
[
(ψ1 + ψ2)ν(κ, T ) +

ψ3b1
κ− b2

(ν(κ, T )− ν(b2, T ))

]
s2γ2

(
1 +

β2γ1∆

ηΣη′

)
,

15



the function H(ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3, T , ν) by

H(ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3, T , ν) ≡[
1

2(κ+ ρ)

(
ψ̂1 +

ψ̂3b1
κ+ ρ− b2

)(
ψ1 −

ψ3b1
κ+ ρ+ b2

)
ν(κ+ ρ, T )

− ψ̂3b1
(κ+ ρ+ b2)(κ+ ρ− b2)

(
ψ1 −

ψ3b1
2b2

)
ν(b2, T )

] [
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆

ηΣη′

+

[
1

2κ+ ρ

(
ψ̂1 + ψ̂2 +

ψ̂3b1
κ− b2

)(
ψ1 −

ψ3b1
κ+ b2

)
ν(κ, T )

− 1

2κ+ ρ

(
ψ̂1 +

ψ̂3b1
κ+ ρ− b2

)(
ψ1κ

κ+ ρ
− ψ2 −

ψ3b1κ

(κ+ ρ)(κ+ ρ+ b2)

)
ν(κ+ ρ, T )

− ψ̂3b1
(κ+ b2)(κ+ ρ− b2)

(
2ψ1κρ

(κ− b2)(κ+ ρ+ b2)
+ ψ2 −

ψ3κb1ρ

b2(κ− b2)(κ+ ρ+ b2)

)
ν(b2, T )

]
s2β2γ2∆

ηΣη′

+

[
1

2κ

(
ψ̂1 + ψ̂2 +

ψ̂3b1
κ− b2

)(
ψ1ρ

2κ+ ρ
+ ψ2 −

ψ3b1ρ

(2κ+ ρ)(κ+ b2)

)
ν(κ, T )

− 1

2κ+ ρ

(
ψ̂1 +

ψ̂3b1
κ+ ρ− b2

)(
ψ1ρ

2(κ+ ρ)
+ ψ2 −

ψ3b1ρ

2(κ+ ρ)(κ+ ρ+ b2)

)
ν(κ+ ρ, T )

− ψ̂3b1ρ

(κ+ b2)(κ− b2)(κ+ ρ− b2)

(
ψ1ρ

κ+ ρ+ b2
+ ψ2 −

ψ3b1ρ

2b2(κ+ ρ+ b2)

)
ν(b2, T )

]
s2,

and the functions K1(ψ1, ψ3, T , ν) and K2(ψ1, ψ3, T , ν) by

K1(ψ1, ψ3, T , ν) ≡− 1

2κ+ ρ

(
ψ1 −

ψ3b1
κ+ b2

)
ν(κ, T )

ϕ2β2
r + κ

,

K2(ψ1, ψ3, T , ν) ≡−
[

1

2κ+ ρ

(
ψ1 +

ψ3b1
κ+ ρ− b2

)
ν(κ+ ρ, T )− ψ3b1

(κ+ b2)(κ+ ρ− b2)
ν(b2, T )

]
ϕ2β2
r + κ

.
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We define the functions {νi(ω, T )}i=0,..,6 by

ν0(ω, T ) ≡e−ωT ,

ν1(ω, T ) ≡1− e−ωT

ω
,

ν2(ω, T ) ≡ 1

ω

(
T − 1− e−ωT

ω

)
,

ν3(ω, T ) ≡e−ωT1 1− e−ωT2

ω
,

ν4(ω, T ) ≡e−ωT1 e
ωmin{T1,T2} − 1

ω
,

ν5(ω, T ) ≡e−ωT1 e
ω(2min{T1,T2}−T2) + e−ωT2 − 2

ω2
,

ν6(ω, T ) ≡e
−ωT1 − e−ωT2

ω
,

where T is a scalar for i = 0, 1, 2, and a two-dimensional vector with components (T1, T2) for

i = 3, 4, 5, 6. We define the scalars (L1, L2,∆1,∆2,∆3,∆4,∆5,∆6) by

L1 ≡
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
,

L2 ≡rᾱ
(
f +

k∆

ηΣη′

)
+ (γR1 + γR2 )C̄ + γR3

b0 − b1C̄

b2
− k1q̄1 − k2q̄2,

∆1 ≡f
[
ηΣ3η′ − (ηΣ2η′)2

ηΣη′

]
+ k

(
ηΣ2p′f

)2
,

∆2 ≡f

[
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

]
+ kηΣ2p′fpfΣ

2p′f ,

∆3 ≡f

[
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

]
+ k

(
pfΣ

2p′f
)2
,

∆4 ≡f
[
Tr(Σ2)− ηΣ3η′

ηΣη′

]
+ kpfΣ

3p′f ,

∆5 ≡∆4 −
∆1

ηΣη′
,

∆6 ≡f∆5 + k∆3.

where Tr(M) denotes the trace of the matrix M .
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Proposition 5.1 The Sharpe ratio of the momentum strategy (5.2), in which weights are con-

structed using index-adjusted past returns, is

SR
wM̂ =

[
G(γR1 , γ

R
2 , γ

R
3 , τ, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , τ, ν1) + L2

2τ
]
pfΣ

2p′f√[
2G(γR1 , γ

R
2 , γ

R
3 , τ, ν2) + 2H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , τ, ν2) + L2

2τ
2
]
∆3 + τ∆6

. (5.4)

Proposition 5.1 yields an intuitive decomposition of momentum profits. In the proposition’s

proof, we show that the numerator of the Sharpe ratio (5.4) can be written as

1

dt

∫ t

t−τ

{
E
[
Covu(dR̂

′
u, dR̂t)

]
+ Cov

[
Eu(dR̂

′
u), Et(dR̂t)

]
+ E(dR̂′

u)E(dR̂t)
}
. (5.5)

The three terms inside the curly bracket correspond to three distinct sources of momentum profits.

The first term corresponds to profits earned because of the response of expected returns to shocks.

As shown in Proposition 3.5, a shock to a stock’s return moves the stock’s short-run expected

return in the same direction as the shock. Hence, a stock hit by a positive shock both receives

higher weight in the momentum strategy and is expected to do better going forward, resulting in

momentum profits.

The second term corresponds to profits earned because of time-variation in expected returns,

shown in Proposition 3.3. Consider a stock whose expected return is temporarily high, i.e., its

conditional expected return is higher than its unconditional average. Since such a stock is expected

to perform well, its expected weight in the momentum strategy is higher than its unconditional

average. Moreover, the stock is expected to do better than its unconditional average going forward,

resulting in momentum profits.

The first two terms add up to the unconditional autocovariance of returns. Past returns can

be informative about future expected returns because of the response of the latter to unexpected

shocks: this is the first term, and is equal to the conditional autocovariance since shocks are the

difference between returns and their conditional expectation. Past returns can also be informative

because of their expected-return component, which is persistent: this is the second term, and is

equal to the unconditional autocovariance of conditional expected returns.

The first two terms capture momentum profits earned from time-series variation in the expected

return of each stock. Additional profits are earned because of cross-sectional variation in stocks’

unconditional expected returns (index-adjusted). These correspond to the third term. Stocks with

higher unconditional expected returns both receive higher weight in the momentum strategy on

average and are expected to do better going forward, resulting in momentum profits.
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The calibration in Vayanos and Woolley (2011) indicates that the dominant source of mo-

mentum profits is the first, i.e., the conditional autocovariance. This term is also key for the

simultaneous emergence of short-run momentum and long-run reversal. Indeed, the second and

third terms would imply that a momentum strategy is profitable at all lags.

Proposition 5.2 The Sharpe ratio of the momentum strategy (5.1), in which weights are con-

structed using raw past returns can be derived from (5.4) by adding

L1L2τηΣ
2p′f (5.6)

to the numerator and

fτ
∆1

ηΣη′
+ L2

1τ
2∆1 + 2L1L2τ

2∆2 (5.7)

to the term inside the square root in the denominator.

Using Propositions 5.1 and 5.2, we can examine whether a momentum strategy is best imple-

mented using raw or index-adjusted past returns. Implementing the strategy using raw returns

favors stocks whose cashflows covary highly with the market index. Indeed, the high covariance

causes these stocks to have high expected (raw) return and hence high expected weight in the mo-

mentum strategy. Implementing instead the strategy using index-adjusted returns eliminates this

effect because a stock’s covariance with the index does not affect the stock’s expected index-adjusted

return.

Since trading strategies are evaluated based on their index-adjusted returns, the weight they

give to a stock should depend on measures that predict the stock’s own index-adjusted return.

The latter return depends only on the stock’s covariance with the flow portfolio. Hence, using raw

returns to implement a momentum strategy can dominate using index-adjusted returns only if a

stock’s covariance with the index is informative about the stock’s covariance with the flow portfolio.

If instead the two covariances are unrelated, then raw returns only introduce noise relative to index-

adjusted returns. Proposition 5.3 shows a result along these lines in the simple case where each

stock has a “twin” that has the same weight in the market index η, and all pairs of twins have the

same weight in the true market portfolio θ relative to η. Under these assumptions, differences in

stocks’ covariance with the flow portfolio arise within pairs of twins, but are unrelated to stocks’

covariance with the market index.
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Proposition 5.3 Suppose that each stock n has a twin n′ that has the same index weight (ηn = ηn′),

cashflow covariance with each other stock (Σnm = Σn′m for all m ̸= n, n′), and cashflow variance

(Σnn = Σn′,n′). Suppose also that all pairs of twins have the same weight in θ relative to η (
θn+θn′
ηn+ηn′

independent of n). If the momentum strategy (5.1) implemented using raw past returns yields a

positive Sharpe ratio, then its counterpart (5.2) using index-adjusted past returns yields a higher

Sharpe ratio, i.e.,

SR
wM̂ ≥ SRwM . (5.8)

Moreover, the inequality (5.8) is strict unless Σ
1
2 η′ is an eigenvector of Σ.

6 Value Strategies

Value weights depend on the comparison between stock prices and expected dividends. To define

and interpret these weights, we recall from (3.1) that prices are the present value of expected

dividends, discounted at the riskless rate r, minus a risk discount. Lemma 6.1 shows that the

risk discount is the present value of expected returns, discounted at r. Since from Proposition 3.3

expected returns consist of a compensation for bearing risk that correlates with the market index,

and a compensation for bearing risk that correlates with the flow portfolio, a similar decomposition

applies to the risk discount: it is the sum of discounts (Γ1t,Γ2t) arising because of stocks’ correlation

with the index and the flow portfolio, respectively.

Lemma 6.1 Stock prices are

St =

∫ ∞

t
[Et(dDt′)− Et(dRt′)] e

−r(t′−t) =
F̄

r
+
Ft − F̄

r + κ
− Γ1t − Γ2t, (6.1)

where

Γ1t ≡Et

[∫ ∞

t

rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Covt′(dRt′ , ηdRt′)e

−r(t′−t)

]
=

αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′, (6.2)

Γ2t ≡Et

[∫ ∞

t
Λt′Covt′(dRt′ , pfdRt′)e

−r(t′−t)

]
=

(
f +

k∆

ηΣη′

)[∫ ∞

t
E (Λt′) e

−r(t′−t)dt′
]
Σp′f ,

(6.3)

are risk discounts arising because of stocks’ correlation with the index and the flow portfolio, re-

spectively.
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We consider four implementations of a value strategy:

(
wV
t

)′ ≡ F̄
r
+
ϵ(Ft − F̄ )

r + κ
− St, (6.4)

(
wV̂
t

)′
≡ F̄
r
+
ϵ(Ft − F̄ )

r + κ
− Ŝt, (6.5)

where ϵ ∈ {0, 1} and

Ŝt ≡ St + Γ1t. (6.6)

Under all implementations, a stock’s value weight increases linearly in the difference between the

present value of the stock’s expected dividends, discounted at r, and the stock’s price. The four

implementations differ in the measures of expected dividends and price.

We consider two forecasts for expected dividends: an optimal forecast, which conditions on all

information available at time t, and a crude forecast, which conditions only on the instantaneous

dividend dDt. The optimal forecast depends on the expected dividend rate Ft, which is a sufficient

statistic for all other information. It is the forecast used by the manager in the model, enters in the

equilibrium prices (3.1) and (6.1), and corresponds to ϵ = 1. We also consider the crude forecast

because Ft might not be observable to an investor outside the model. Because of the Brownian

noise dBD
t , observing dDt yields no information on Ft. Hence, the crude forecast sets expected

dividends equal to their unconditional mean F̄ , and corresponds to ϵ = 0. The optimal and crude

forecasts are polar cases; intermediate cases can be derived by setting ϵ to be strictly between zero

and one in the propositions below.

We consider two price measures: the raw price in (6.4), and an index-adjusted price in (6.5).

The latter is derived by adding back to the raw price the discount Γ1t arising from a stock’s

correlation with the index. Besides simplifying the calculations, index-adjustment can raise the

Sharpe ratio by providing a less noisy measure of flow-generated mispricing. Indeed, a stock’s raw

price can be low relative to the present value of expected dividends because the stock’s cashflows

covary highly with the index, or because of current or anticipated flows. Index-adjustment isolates

the latter effect.
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Using (6.1) and (6.6), we can express the value weights (6.4) and (6.5) in terms of the risk

discounts (Γ1t,Γ2t):(
wV
t

)′ ≡Γ1t + Γ2t −
(1− ϵ)(Ft − F̄ )

r + κ
, (6.7)

(
wV̂
t

)′
≡Γ2t −

(1− ϵ)(Ft − F̄ )

r + κ
. (6.8)

When weights are computed using raw prices, they are equal to the sum of the discounts minus

an error in forecasting expected dividends. Index-adjustment eliminates the risk discount Γ1t. The

forecast error is present only under the crude forecast (ϵ = 0), and increases the weights of stocks

corresponding to low components of the vector Ft. This is because the low expected dividends of

those stocks are reflected in the price but not in the crude forecast, so the stocks appear cheap.

Proposition 6.1 The Sharpe ratio of the value strategy (6.5), in which weights are constructed

using index-adjusted prices, is

SR
wV̂ =

[
H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , 0, ν0)− 1−ϵ

r+κK1(γ
R
1 , γ

R
3 , 0, ν0) +

L2
2
r

]
pfΣ

2p′f√[
H(γ1, γ2, γ3, γ1, γ2, γ3, 0, ν0)− 2(1−ϵ)

r+κ K1(γ1, γ3, 0, ν0) +
L2
2

r2

]
∆3 +

(1−ϵ)2ϕ2

2κ(r+κ)2
∆4

. (6.9)

Proposition 6.1 yields an intuitive decomposition of value profits. In the proposition’s proof,

we show that the numerator of the Sharpe ratio (6.9) can be written as

1

dt

{
Cov

[
Γ′
2t, Et(dR̂t)

]
− Cov

[
(1− ϵ)(Ft − F̄ )′

r + κ
,Et(dR̂t)

]
+ E(Γ′

2t)E(dR̂t)

}
. (6.10)

The three terms inside the curly bracket correspond to three distinct sources of value profits. The

first term corresponds to profits earned because of the covariance between a stock’s risk discount Γ2t

and its expected return. Suppose that the risk discount is temporarily high because of flows, and

so the stock receives high weight in the value strategy. The stock’s expected return is temporarily

high if the high discount is caused by current flows, and low if it is caused by anticipated future

flows. Value profits are earned if the first scenario dominates. It does for small s, as we show in

the proposition’s proof, and our numerical solutions indicate the same for general values of s.

The second term is non-zero only under the crude forecast, and corresponds to profits earned

because of the covariance between a stock’s expected dividends Ft and its expected return. Suppose

that expected dividends are temporarily low, and so the stock receives high weight in the value
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strategy because of the error under the crude forecast. The negative shock that caused the low

expected dividends impacts expected return through the amplifying fund flows that it triggers.

Current flows raise expected return, while anticipated future flows lower it. Value profits are

earned if the first scenario dominates. We show that it does, as in the case of the first term.

The first two terms capture value profits earned from time-series variation in the expected

return of each stock. Additional profits are earned because of cross-sectional variation in stocks’

unconditional expected returns (index-adjusted). These correspond to the third term. Stocks with

higher unconditional expected returns receive higher weight in the value strategy on average because

of a high discount Γ2t. They are also expected to do better going forward, resulting in value profits.

Proposition 6.2 The Sharpe ratio of the value strategy (6.4), in which weights are constructed

using raw prices can be derived from (6.9) by adding

L1L2

r
ηΣ2p′f (6.11)

to the numerator and

L2
1

r2
∆1 + 2

L1L2

r2
∆2 (6.12)

to the term inside the square root in the denominator.

Using Propositions 6.1 and 6.2, we can examine whether a value strategy is best implemented

using raw or index-adjusted prices. Implementing the strategy using raw prices favors stocks whose

cashflows covary highly with the market index. Indeed, the high covariance causes these stocks

to have high discounts Γ1t and hence high weight in the value strategy. Implementing instead the

strategy using index-adjusted prices eliminates this effect. As in the case of momentum strategies,

using index-adjusted prices is better if stocks’ covariances with the index are unrelated to their

covariances with the flow portfolio.

Proposition 6.3 Suppose that each stock n has a twin n′ that has the same index weight (ηn = ηn′),

cashflow covariance with each other stock (Σnm = Σn′m for all m ̸= n, n′), and cashflow variance

(Σnn = Σn′,n′). Suppose also that all pairs of twins have the same weight in θ relative to η (
θn+θn′
ηn+ηn′

independent of n). If the value strategy (6.4) implemented using raw prices yields a positive Sharpe
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ratio, then its counterpart (6.5) using index-adjusted prices yields a higher Sharpe ratio, i.e.,

SR
wV̂ ≥ SRwV . (6.13)

Moreover, the inequality (6.13) is strict unless Σ
1
2 η′ is an eigenvector of Σ.

7 Combining Momentum and Value

In this section we compute the covariance between momentum and value strategies. This yields

additional empirical predictions for the model. It also allows us to further explore the model’s

implications for portfolio management by determining how to best combine momentum and value

strategies.

To determine the optimal portfolio of momentum and value, we extend the mean-variance

optimization of Section 4. Instead of assuming that the investor has access to only one strategy wt

in addition to the market index, we assume that there are two strategies (wA
t , w

B
t ). The investor

chooses investments x̂ in the index and (ŷA, ŷB) in the strategies to maximize (4.4) subject to the

budget constraint

dWt = rWtdt+ x̂ηdRt +
∑

i=A,B

ŷiwi
tdRt

= rWtdt+ ˆ̂xηdRt +
∑

i=A,B

ŷiŵi
tdRt, (7.1)

where

ˆ̂x ≡ x̂+
∑

i=A,B

ŷi
Covt(w

i
tdRt, ηdRt)

V art(ηdRt)

is the investor’s overall exposure to the index. The maximization problem is solved in the Appendix

(Lemma E.1). The Sharpe ratio of the optimal portfolio of (wA
t , w

B
t ) is

SRwAB ≡

√
SR2

wA + SR2
wB − 2SRwASRwBCorr(wA, wB)

1− Corr(wA, wB)2
, (7.2)

where

Corr(wA, wB) ≡
Cov

(
ŵA
t dRt, ŵ

B
t dRt

)√
V ar(ŵA

t dRt)V ar(ŵB
t dRt)
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denotes the correlation between the index-adjusted versions (ŵA
t , ŵ

B
t ) of the strategies (wA

t , w
B
t ).

For simplicity, by correlation and covariance between (wA
t , w

B
t ), we mean from now on the correla-

tion and covariance between their index-adjusted versions.

Proposition 7.1 The covariance between the momentum strategy (5.2) and the value strategy

(6.5), which use index-adjusted returns and prices, respectively, is

Cov(ŵM̂
t dRt, ŵ

V̂
t dRt) =

{[
G(γ1, γ2, γ3, τ, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, τ, ν1)−

1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , τ, ν1)

+
L2
2

r
τ

]
∆3 −

(1− ϵ)ϕ2

(r + κ)2
ν1(κ, τ)(∆5 + β2γ1∆3)

}
dt. (7.3)

The covariance between two strategies (wA
t , w

B
t ) is high if they both give high weight to the

same stocks or to stocks that covary positively. In the proposition’s proof we show that this

covariance is

Cov
(
ŵA
t dRt, ŵ

B
t dRt

)
=
{
Cov

[
ŵA
t , (fΣ+ kΣp′fpfΣ)ŵ

B′
t

]
+ E

(
ŵA
t

)
(fΣ+ kΣp′fpfΣ)E

(
ŵB′
t

)}
dt.

(7.4)

The first term in the curly bracket is the covariance generated by temporal variation in the weights

that the strategies give to stocks. This term involves the covariance between weights, adjusted by

the covariance matrix (fΣ+kΣp′fpfΣ)dt of stock returns. Temporal variation in weights generates

negative covariance between momentum and value strategies—both for small s as we show in the

proposition’s proof, and for general values of s as our numerical solutions indicate. Intuitively, a

stock hit by a positive shock receives temporarily high weight in the momentum strategy. It also

receives temporarily low weight in the value strategy because its risk discount is reduced by the

amplifying fund flows that the shock triggers. Moreover, if the value strategy uses the crude forecast

for dividends, there is an additional effect lowering the stock’s weight: a positive shock to expected

dividends is reflected in the stock’s price but not in the strategy’s forecast for dividends. The

negative covariance between stocks’ momentum and value weights generates negative covariance

between momentum and value strategies, i.e., between these strategies’ returns.

The second term is the covariance generated by the average weights that the strategies give

to stocks. These weights are identical for value and momentum strategies. Intuitively, stocks with

high unconditional expected returns receive high average weight in the momentum strategy because

their past returns are high on average. They also receive high average weight in the value strategy
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because their risk discount (which is the present value of expected returns) is high. This effect

generates positive covariance between momentum and value strategies. It corresponds to the last

term in the square bracket in (7.3), while the effect of temporal variation corresponds to the other

terms.

The covariance between momentum and value strategies is negative if the effect of temporal

variation in weights dominates that of average weights. This is the case when the time-variation in

the cost Ct (measured by the diffusion coefficient s), which determines fund flows, is large relative

to the long-run mean C̄ of Ct, which influences unconditional expected returns.

A negative covariance between momentum and value strategies implies large diversification

benefits from combining these strategies. As (7.2) confirms, negative covariance raises the Sharpe

ratio of the optimal portfolio, holding the Sharpe ratios of the two strategies constant (and assuming

that they are positive).

When momentum and value strategies are constructed using raw returns and prices, the effect

of average weights is larger because there is more cross-sectional variation in unconditional expected

returns. This can raise the covariance.

Proposition 7.2 The covariance between the momentum strategy (5.1) and the value strategy

(6.4), which use raw returns and prices, respectively, can be derived from (7.3) by adding

[
−(1− ϵ)ϕ2

(r + κ)2
ν1(κ, τ)

∆1

ηΣη′
+
L2
1

r
τ∆1 +

2L1L2

r
τ∆2

]
dt. (7.5)

8 Momentum and Value over Long Horizons

Sections 4-7 assume that a strategy’s performance is evaluated over an infinitesimal investment

horizon. This section considers instead a general non-infinitesimal horizon. Denoting the horizon

by T , the Sharpe ratio corresponding to a strategy wt is

SRw,T ≡
E
(∫ t+T

t ŵudRu

)
√
V ar

(∫ t+T
t ŵudRu

)
T

, (8.1)

expressed in annualized terms. We motivate the use of the Sharpe ratio based on portfolio op-

timization in the Appendix, but under stronger assumptions than in the case of an infinitesimal
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horizon.

The expected return in (8.1) is

E

(∫ t+T

t
ŵudRu

)
=

∫ t+T

t
E(ŵudRu) =

TE(ŵtdRt)

dt
(8.2)

and the variance is

V ar

(∫ t+T

t
ŵudRu

)
=

∫ t+T

t
V ar(ŵudRu) + 2

∫
t≤u′<u≤t+T

Cov(ŵu′dRu′ , ŵudRu)

=
TV ar(ŵtdRt)

dt
+ 2

∫
t<u≤t+T

(t+ T − u)
Cov(ŵtdRt, ŵudRu)

dt
, (8.3)

where the second step in each case follows because unconditional moments are time-invariant in

the steady state. The expected return is the sum of instantaneous expected returns. The variance

differs from the sum of instantaneous variances because it includes the autocovariance of returns.

If the autocovariance is positive, then the variance exceeds the sum of instantaneous variances, and

vice-versa. Because of the autocovariance, the Sharpe ratio can depend on the investment horizon.

Eqs. (4.2) and (8.1)-(8.3) imply that the Sharpe ratio SRT
w for investment horizon T is linked to

its infinitesimal-horizon counterpart SRw through

SRT
w =

SRw√
1 + 2

∫
t<u≤t+T

(
1− u−t

T

) Cov(ŵtdRt,ŵudRu)
V ar(ŵtdRt)

. (8.4)

Therefore, SRT
w exceeds SRw if the autocovariance is positive, and vice-versa.

Lemma 8.1 computes the autocovariance of returns for linear strategies. Linear strategies

have weights that are integrals of the Brownian shocks with constant coefficients. The momentum

strategies (5.1) and (5.2), and the value strategies (6.4) and (6.5) are linear.

Lemma 8.1 The covariance between the return of a linear strategy wt at time t and that at time

t′ > t is

Cov(ŵtdRt, ŵt′dRt′) = C1 + C2, (8.5)

where

C1 ≡E [Covt (ŵtdRt, ŵt′dRt′)]

=

(
f +

k∆

ηΣη′

)[
E (ŵtΛt′)Covt(dRt, wt′Σp

′
f ) + E

(
ŵtwt′Σp

′
f

)
Covt(dRt,Λt′)

]
dt′, (8.6)
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and

C2 ≡Cov [Et(ŵtdRt), Eu(ŵt′dRt′)]

=

(
f +

k∆

ηΣη′

)2 [
E(Λt)

2Cov(wtΣp
′
f , wt′Σp

′
f ) + E(wtΣp

′
f )

2Cov(Λt,Λt′)

+ E(wtΣp
′
f )E(Λt)

[
Cov(Λt, wt′Σp

′
f ) + Cov(wtΣp

′
f ,Λt′)

]
+Cov(Λt,Λt′)Cov(wtΣp

′
f , wt′Σp

′
f ) + Cov(Λt, wt′Σp

′
f )Cov(wtΣp

′
f ,Λt′)

]
dtdt′. (8.7)

The autocovariance of returns is the sum of two terms, given by (8.6) and (8.7). The first term

characterizes how expected returns respond to shocks, and is positive if they increase following

positive shocks. The second term is the autocovariance of expected returns, and is positive because

expected returns are persistent. The calculation of each term is complicated by the fact that returns

concern trading strategies rather than individual stocks. This is because the autocovariance of

strategy returns is affected not only by the time-variation of stock expected returns but also by

that of strategy weights. For example, if weights change rapidly over time, as is the case for

momentum strategies that employ a short window of past returns, then the autocovariance of

strategy returns is close to zero.

According to the two-factor model of Proposition 3.3, the expected index-adjusted return of a

trading strategy wt at time t is the product of the strategy’s loading (f + k∆/(ηΣη′))wtΣp
′
f on the

flow portfolio, times the premium Λt associated to that factor. Time-variation in wtΣp
′
f is driven

by that in strategy weights, and time-variation in Λt reflects that in stock expected returns. Both

sources of variation are relevant for the effects captured in (8.6) and (8.7). Eq. (8.6) shows that

the response of the expected return to shocks is a sum of a term characterizing the response of

wtΣp
′
f and a term characterizing the response of Λt. Each term is the product of a covariance,

which characterizes the response, and an expectation. For example, a positive response of wtΣp
′
f

translates to a positive response of the expected return if on average Λt is positive (first term inside

the square bracket in (8.6)). Eq. (8.7) shows that the autocovariance of expected returns is a sum

of terms that involve the autocovariance of Λt, that of wtΣp
′
f , and their cross-autocovariances. For

example, a positive autocovariance of wtΣp
′
f translates to a positive autocovariance of the expected

return (first term inside the square bracket in (8.7)), and especially so if the autocovariance of Λt

is positive (fifth term).

The linearity of trading strategies ensures that factor loadings are normally distributed. Since,
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in addition, Λt is normally distributed, expected returns of trading strategies are products of

normals. Autocovariances involving those products can be written as sums of terms involving

expectations and autocovariances of the products’ components, which are normal. Lemma 8.2

determines expectations and autocovariances that involve Λt and are common to all linear strategies.

Lemma 8.2 The risk premium Λt has the following properties:

E(Λt) =
1

f + k∆
ηΣη′

L2, (8.8)

Cov(Λt,Λt′) =
1(

f + k∆
ηΣη′

)2H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , t

′ − t, ν0), (8.9)

E
(
ŵtwt′Σp

′
f

)
Covt(dRt,Λt′) =

1

f + k∆
ηΣη′

[
E(wtΣp

′
f )

2 + Cov(wtΣp
′
f , wt′Σp

′
f )
]
ΛR,t′−tdt,

(8.10)

where

ΛR,t′−t ≡ G(γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0).

Propositions 8.1 and 8.2 compute the autocovariance of returns of the momentum strategy (5.2)

and the value strategy (6.5), which use index-adjusted returns and prices. Combining Propositions

8.1 and 8.2 with (8.4), we can compute the Sharpe ratios of these strategies for a general investment

horizon T .

Proposition 8.1 The covariance between the return of the momentum strategy (5.2) at time t and
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that at time t′ > t can be derived from (8.6) and (8.7) by substituting (8.8)-(8.10),

E(wtΣ
iv′) = L2τpfΣ

i+1v′, (8.11)

Cov(wtΣ
iv′,Λt′) =

1

f + k∆
ηΣη′

[
G(γR1 , γ

R
2 , γ

R
3 , T , ν3) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν3)

]
pfΣ

i+1v′,

(8.12)

Cov(Λt, wt′Σp
′
f ) =

1

f + k∆
ηΣη′

[
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν4)

+
[
G(γR1 , γ

R
2 , γ

R
3 , τ + t− t′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , τ + t− t′, ν1)

]
1{t′−t<τ}

]
pfΣ

2p′f ,

(8.13)

Cov(wtΣp
′
f , wt′Σp

′
f ) =

[
G(γR1 , γ

R
2 , γ

R
3 , T , ν5) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν5)

]
(pfΣ

2p′f )
2

+ (τ + t− t′)∆31{t′−t<τ} (8.14)

E (ŵtΛt′)Covt(dRt, wt′Σp
′
f ) =

[
E(wtΣp

′
f )E(Λt) + Cov(wtΣp

′
f ,Λt′)

]
wMR1,T dt

+

[(
E(wtΣ

2p′f )−
E(wtΣη

′)

ηΣη′
ηΣ2p′f

)
E(Λt) + Cov

(
wtΣ

2p′f − wtΣη
′

ηΣη′
ηΣ2p′f ,Λt′

)]
wMR2,T dt,

(8.15)

where i = 1, 2, v ∈ {pf , η}, T ≡ (t′ − t, τ), 1S is equal to one if condition S is satisfied and zero

otherwise,

wMR1,T ≡
[
G(γR1 , γ

R
2 , γ

R
3 , T , ν4) + k1{t′−t<τ}

]
pfΣ

2p′f ,

wMR2,T ≡f1{t′−t<τ}.

Proposition 8.2 The covariance between the return of the value strategy (6.5) at time t and that
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at time t′ > t can be derived from (8.6) and (8.7) by substituting (8.8)-(8.10),

E(wtΣ
iv′) =

L2

r
pfΣ

i+1v′, (8.16)

Cov(wtΣ
iv′,Λt′) =

1

f + k∆
ηΣη′

[
H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , t

′ − t, ν0)−
1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , t

′ − t, ν0)

]
pfΣ

i+1v′,

(8.17)

Cov(Λt, wt′Σp
′
f ) =

1

f + k∆
ηΣη′

[
H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, t

′ − t, ν0)−
1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , t

′ − t, ν0)

]
pfΣ

2p′f ,

(8.18)

Cov(wtΣp
′
f , wt′Σp

′
f ) =

[
H(γ1, γ2, γ3, γ1, γ2, γ3, t

′ − t, ν0)−
1− ϵ

r + κ
K1(γ1, γ3, t

′ − t, ν0)

− 1− ϵ

r + κ
K2(γ1, γ3, t

′ − t, ν0)

] (
pfΣ

2p′f
)2

+
(1− ϵ)2ϕ2

2κ(r + κ)2
ν0(κ, t

′ − t)pfΣ
3p′f ,

(8.19)

E (ŵtΛt′)Covt(dRt, wt′Σp
′
f ) =

[
E(wtΣp

′
f )E(Λt) + Cov(wtΣp

′
f ,Λt′)

]
wV R1,t′−tdt

+

[(
E(wtΣ

2p′f )−
E(wtΣη

′)

ηΣη′
ηΣ2p′f

)
E(Λt) + Cov

(
wtΣ

2p′f − wtΣη
′

ηΣη′
ηΣ2p′f ,Λt′

)]
wV R2,t′−tdt,

(8.20)

where i = 1, 2, v ∈ {pf , η},

wV R1,t′−t ≡
[
G(γ1, γ2, γ3, t

′ − t, ν0)−
(1− ϵ)ϕ2β2γ1

(r + κ)2
ν0(κ, t

′ − t)

]
pfΣ

2p′f ,

wV R2,t′−t ≡− (1− ϵ)ϕ2

(r + κ)2
ν0(κ, t

′ − t).

9 Calibration

9.1 Model Parameters

We set the riskless rate r to 4%. We assume that there are N = 10 stocks, which we interpret as

industry sectors. We assume that the market index η includes one share of each stock, i.e., η = 1,

where 1 ≡ (1, .., 1), and that the true market portfolio includes one share of each stock on average,

i.e., θ̄ ≡
∑N

n=1 θn/N = 1. These are normalizations because we can redefine one share of each

stock and of the index, leaving Sharpe ratios unchanged. We assume that stocks are symmetric
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in the sense that they all have the same standard deviation of dividends and the same pairwise

correlations. (Our closed-form solutions for Sharpe ratios, however, do not require any symmetry.)

Hence, the covariance matrix of dividends is Σ = σ̂2(I + ω1′1), where I is the identity matrix and

(σ̂, ω) are scalars. We calibrate σ̂ using the Sharpe ratio SRη of the market index η. Closed-form

solutions for SRη and for all other quantities used in the calibration are in the Appendix. We

express SRη in annualized terms, and set it to 30%. This is equal to the Sharpe ratio of the

S&P500 index, assuming an annual expected excess return of 4.5% and a standard deviation of

15%. The implied value of σ̂ is 0.22.4 We calibrate ω using the correlation between industry sectors

and the market. Ang and Chen (2002) find that the average correlation between the returns of an

industry sector and of a broad market index is 87% across the 13 sectors that they consider. The

implied value of ω is seven. We set ϕ to 0.3. This parameter determines the size of shocks to the

expected dividend rate Ft relative to dividends Dt, and has small effects on our calibration results.

VW show that the only characteristic of the true market portfolio θ that affects Sharpe ratios

when stocks are symmetric is σ(θ) ≡
√∑N

n=1(θn − θ̄)2. This is the standard deviation across stocks

of the number of shares included in θ, and must be strictly positive so that θ differs from the market

index η. We calibrate σ(θ) using the average deviation between the weight that an active fund gives

to an industry sector and the sector’s weight in a broad market index. Kacperczyk, Sialm, and

Zheng (KSZ1 2005) find that the sum of squared deviations across the ten sectors that they consider

is 4.36% for the median fund, implying an average deviation of 6.6% (10 × 6.6%2 = 4.36%). To

map this into a value for σ(θ), we adjust for the fact that θ is the sum of active- and index-fund

holdings. The holdings of active funds are about ten times those of index funds in KSZ1’s sample

period, so the average deviation for a combined active and index fund (which is what θ represents)

is 6%. The implied value of σ(θ) is 0.6.

To calibrate the diffusion coefficient s of the cost Ct, we recall the cost’s interpretation as minus

the return gap. Kacperczyk, Sialm, and Zheng (KSZ 2008) find that the top decile of mutual funds

in terms of lagged one-year return gap earn a monthly CAPM alpha of 0.273%, while the bottom

decile earn -0.431%.5 Since in our model there is only one active fund, we interpret the differential

between deciles in a time-series rather than a cross-sectional sense. The implied value of s is 1.6. We

set the persistence parameter κ of the cost to 0.3. This is consistent with KSZ’s finding that shocks

4Note that σ̂ is a volatility per share rather than per dollar because this is how returns are expressed in our model.
We calibrate using Sharpe ratios because these are comparable for per-share and per-dollar returns.

5KSZ derive two different sets of estimates; we focus on those derived using a back-testing procedure that reduces
estimation noise.
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to the return gap shrink to about one-third of their size within four years (log(3)/0.3 = 3.7). We set

the long-run mean C̄ of the cost to zero, consistent with KSZ’s finding that the average return gap

in the cross-section is zero. With C̄ = 0, negative values of the cost are equally likely as positive

values, which means that the cost cannot be interpreted solely as a managerial perk or operational

cost. Hence, we emphasize again the managerial-ability interpretation, and for consistency set the

parameter λ to zero.

We calibrate the adjustment-cost parameter ψ using the empirical response of fund flows to

performance. Coval and Stafford (2007) find that a positive shock to a fund’s return generates

flows into the fund in each of the next four quarters, with the effect dying off in the fifth. We set

ψ = 1.2, which ensures that following a positive shock to the active fund’s return, the investor’s

holdings yt in the fund increase in the next four quarters and start decreasing afterwards.

We set the investor’s coefficient of absolute risk aversion α to one. This is a normalization

because we can redefine the units of the consumption good, leaving Sharpe ratios unchanged. To

calibrate the risk aversion of the manager, we recall that he can be interpreted as an aggregate of

all “smart-money” agents with the expertise to exploit mispricings. We are interested in the capital

that these experts own, rather than in the capital they might manage on behalf of outsiders, since

only the former can be used to exploit mispricings generated by outsiders’ flows. Since most of the

financial expertise lies within the financial industry, the capital of experts can be linked to that

industry’s GDP share. Philippon (2008) reports that the GDP share of the Finance and Insurance

industry was 5.5% on average during 1960-2007 in the US. We view this as an upper bound since

only part of that industry concerns asset markets, and set the manager’s coefficient of absolute risk

aversion ᾱ to 30. This means that the manager accounts for 3.2% (=1/(30+1)) of aggregate risk

tolerance.6

As an independent check for our choices of s and ᾱ, we compute two additional quantities:

the turnover and the return variance generated by fund flows. Lou (2011) finds that the standard

deviation of a stock’s quarterly turnover generated by fund flows is 0.7%. Since the funds in Lou’s

sample account for about 10% of market capitalization, the standard deviation of flow-generated

volume is 7% of assets managed by these funds; we find 7.8%. Greenwood and Thesmar (GT 2001)

find that fund flows explain 8% of stock return variance; we find 16%. GT’s sample, however,

includes less than half of all professionally-managed wealth. Accounting for that, and for possible

measurement noise, is likely to produce a number even larger than 16%. Raising s and ᾱ to match

6Risk tolerance in our model is independent of capital because of exponential utility. Our choice of ᾱ is based on
the notion that risk tolerance is proportional to capital, which is true under power utility.
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such a number would raise the Sharpe ratios of momentum and value strategies that we find in the

next section.

9.2 Results

We first compute Sharpe ratios over infinitesimal investment horizons. The maximum Sharpe ratio

across all strategies (Proposition 4.2) is 61%. Since stocks are assumed symmetric, the momentum

and value strategies (5.2) and (6.5), which use index-adjusted returns and prices, are equivalent

to (5.1) and (6.4), which use raw returns and prices. We refer to them as the momentum and the

value strategy, respectively.

Figure 1 plots the Sharpe ratio of the momentum strategy as a function of the length τ of

the window over which past returns are calculated. This Sharpe ratio is positive for windows of

less than three years, and then turns negative. Thus, a strategy based on short-run momentum

is profitable, and so is one based on long-run reversal. The highest Sharpe ratio of momentum is

achieved using a window of four months, and is 40%. Moreover, windows from one to 11 months

yield Sharpe ratios larger than 30%, the ratio of the market index. The Sharpe ratio of momentum

converges to zero as the window length goes to zero because very recent performance is a very noisy

signal of future fund flows.
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Figure 1: Sharpe ratio of the momentum strategy as a function of the length τ of
the window over which past returns are calculated. The window length is measured
in years, and the Sharpe ratio is expressed in annualized terms. The parameters for
which the figure is drawn are described in Section 9.1.
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Recall from Section 5 (Eq. (5.5)) that momentum profits can be decomposed into three sources.

The first is the positive short-run response of expected returns to shocks: shocks hit by positive

shocks receive high weight in the momentum strategy, and are expected to do well in the short

run. The second is the time-series variation of expected returns (regardless of how these respond

to shocks): stocks whose conditional expected returns are higher than their unconditional averages

receive high expected weight in the momentum strategy, and are expected do well in the short

run because conditional expected returns are persistent. The third is the cross-sectional variation

of unconditional expected returns: stocks with high unconditional expected returns receive high

expected weight in the momentum strategy, and are expected to do well going forward. The first

source of profits is dominant in our calibration: for example, 62% of the maximum Sharpe ratio in

Figure 1 is generated by the first source, 36% by the second, and 2% by the third.

The Sharpe ratio of the value strategy that uses the optimal forecast for expected dividends

(ϵ = 1) is 25.5%. Surprisingly, the value strategy that uses the crude forecast (ϵ = 0) yields a

slightly higher Sharpe ratio of 26%. Thus, using a crude forecast for expected dividends does not

impair the Sharpe ratio of a value strategy, and can even enhance it. This is because the forecast

error helps predict expected returns. Indeed, stocks whose expected dividends are temporarily low

appear to be cheap under the crude forecast, and hence receive high weight in the value strategy.

The negative shock that caused the low expected dividends also raises the expected return of these

stocks through the amplifying fund flows that it triggers. This raises the value strategy’s expected

return, as pointed out in Section 6 (second term in (6.10)), and can raise the Sharpe ratio.

The correlation between the momentum and the value strategy is negative. For example, it

is minus 3% between the momentum strategy that achieves the maximum Sharpe ratio in Figure

1 and the value strategy that uses the crude forecast (ϵ = 0). Thus, combining momentum and

value has significant diversification benefits. The Sharpe ratio of the optimal combination is 48%,

significantly larger than that of the optimal momentum (40%) and the optimal value (26%). At the

same time, it is significantly smaller than the maximum Sharpe ratio across all strategies, which

is 61%. Thus, momentum and value strategies can be improved, possibly by using information on

fund flows. Our model can yield predictions as to what type of fund-flow information can raise the

Sharpe ratio.

We next turn to non-infinitesimal investment horizons. Figure 2 plots the autocorrelation of

returns of the momentum strategy that achieves the maximum Sharpe ratio in Figure 1 and of the

value strategy that uses the crude forecast (ϵ = 0). The autocorrelation concerns instantaneous
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returns, which we assume are over intervals with the same infinitesimal length dt. We plot the

autocorrelation as a function of the time lag between the intervals. We also divide by dt since the

autocorrelation is of order dt.
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Figure 2: Return autocorrelations of the momentum and the value strategy. The mo-
mentum strategy uses a four-month window for past returns (τ = 4/12), and the value
strategy uses the crude forecast for expected dividends (ϵ = 0). The autocorrelation
concerns returns over intervals with the same infinitesimal length dt. It is plotted as
a function of the time lag between the intervals, and is divided by dt. The parameters
for which the figure is drawn are described in Section 9.1.

Figure 2 shows that the return autocorrelation is positive for both the momentum and the value

strategy over short lags. Intuitively, since strategy weights exhibit some persistence, the short-run

momentum in stock returns translates to short-run momentum in the returns of trading strategies.

The momentum and the value strategy differ, however, in their return autocorrelation over longer

lags. This autocorrelation is close to zero for the momentum strategy because momentum weights

change rapidly. It is negative, however, for the value strategy. Indeed, since value weights change

slowly, the the long-run reversal in stock returns translates to long-run reversal in the returns of

the value strategy.

Figure 2 suggests that the long-horizon Sharpe ratios of the momentum and the value strategy

can differ significantly from their short-horizon counterparts. Figure 3 plots the Sharpe ratios of

the two strategies as a function of the investment horizon. We consider the momentum strategy

that achieves the maximum Sharpe ratio in Figure 1 and the value strategy that uses the crude

forecast (ϵ = 0). The Sharpe ratios of both strategies decrease with the investment horizon when

the horizon is small. This is because the returns of the strategies are positively autocorrelated over
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short lags, and hence the strategies’ risk increases with the horizon. Because, however, the return

autocorrelation of the momentum strategy dies off to zero quickly, the same is true for the decrease

in the strategy’s Sharpe ratio, with the ratio becoming essentially flat for horizons longer than one

year. The Sharpe ratio of the value strategy, on the other hand, increases for horizons longer than

one year, and eventually overtakes that of momentum. The increase is because the returns of the

value strategy are negatively autocorrelated over long lags, and hence the strategy’s risk decreases

with the horizon when the horizon becomes sufficiently long.
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Figure 3: Sharpe ratios of the momentum and the value strategy as a function of
the investment horizon. The momentum strategy uses a four-month window for past
returns (τ = 4/12), and the value strategy uses the crude forecast for expected div-
idends (ϵ = 0). The investment horizon is measured in years, and the Sharpe ratios
are expressed in annualized terms. The parameters for which the figure is drawn are
described in Section 9.1.
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Appendix

A Equilibrium

The proofs of Propositions 3.1-3.5 are in Vayanos and Woolley (VW 2011). Additional results of

VW that we use in subsequent proofs are the properties of the flow portfolio

ηΣp′f = 0,

θΣp′f = pfΣp
′
f =

∆

ηΣη′
,

and the characterizations of the investor’s stock holdings

xtη + ytzt = ytpf +
ᾱ

α+ ᾱ

ηΣθ′

ηΣη′
, (A.1)

of stock returns

dRt =
{
ra0 +

[
γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
dt+

(
σ + β1γ1Σp

′
fpfσ

)
dBD

t

+
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
dBF

t − sγ2

(
1 +

β2γ1∆

ηΣη′

)
Σp′fdB

C
t , (A.2)

and of the dynamics of Ĉt

dĈt = κ(C̄ − Ĉt)dt− ρ(Ct − Ĉt)dt− β1pfσdB
D
t − β2

(
ϕpfσdB

F
t

r + κ
− sγ2∆dB

C
t

ηΣη′

)
. (A.3)

B Evaluation of Trading Strategies

Proof of Proposition 4.1: Using (3.8), we can write (4.1) as

ŵt ≡ wt −
wtΣη

′

ηΣη′
η. (B.1)
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The expected return of the index-adjusted strategy is

E(ŵtdRt) =E [Et(ŵtdRt)]

=E [ŵtEt(dRt)]

=E

{(
wt −

wtΣη
′

ηΣη′
η

)[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
(
fΣ+ kΣp′fpfΣ

)
η′ + Λt

(
fΣ+ kΣp′fpfΣ

)
p′f

]
dt

}

=E

{(
wt −

wtΣη
′

ηΣη′
η

)[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
fΣη′ + Λt

(
f +

k∆

ηΣη′

)
Σp′f

]
dt

}

=

(
f +

k∆

ηΣη′

)
E
(
ΛtwtΣp

′
f

)
dt, (B.2)

where the third step follows from (3.8), (3.9) and (B.1). Note that the second, third, fourth and

fifth steps in the derivation of (B.2) imply that

Et(ŵtdRt) =

(
f +

k∆

ηΣη′

)
ΛtwtΣp

′
fdt. (B.3)

The variance of the index-adjusted strategy is

V ar(ŵtdRt) =E[V art(ŵtdRt)] + V ar[Et(ŵtdRt)]

=E[V art(ŵtdRt)]

=E

[(
wt −

wtΣη
′

ηΣη′
η

)(
fΣ+ kΣp′fpfΣ

)(
wt −

wtΣη
′

ηΣη′
η

)′]
dt

=

{
f

[
E(wtΣw

′
t)−

E
[
(wtΣη

′)2
]

ηΣη′

]
+ kE

[
(wtΣp

′
f )

2
]}

dt, (B.4)

where the second step follows because E[V art(wtdRt)] is of order dt and V ar[Et(wtdRt)] of order

(dt)2, and the third step follows from (3.8) and (B.1). Eq. (4.3) follows from (4.2), (B.2) and (B.4).

Proof of Lemma 4.1: Eqs. (4.7) and (4.8) follow from (4.6). Substituting (4.7) and (4.8) into

the investor’s utility, which is the term in curly brackets in (4.6), we find (4.9).

Proof of Proposition 4.1: To show that the Sharpe ratio is maximized for wt = Λtpf , we write,

for any given t, the strategy wt as a linear combination of the market index, the flow portfolio, and

an orthogonal component, i.e.,

wt = λ1tη + λ2tpf + w̌t, (B.5)
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where ηΣw̌t = pfΣw̌t = 0. Substituting wt from (B.5), we can write (4.3) as

SRw =

(
f + k∆

ηΣη′

)
∆

ηΣη′E(Λtλ2t)√(
f + k∆

ηΣη′

)
∆

ηΣη′E(λ22t) + fE(w̌tΣw̌′
t)

. (B.6)

The Sharpe ratio is maximized for w̌t = 0. Substituting into (B.6), we find

SRw =
E(Λtλ2t)√
E(λ22t)

√(
f +

k∆

ηΣη′

)
∆

ηΣη′
. (B.7)

The Cauchy-Schwarz inequality implies that the term

E(Λtλ2t)√
E(λ22t)

is maximized when λ2t is proportional to Λt. Therefore, the Sharpe ratio is maximized by the

strategy Λtpf . Setting wt = Λtpf in (4.3), we find the right-hand side of (4.10).

C Momentum

We first prove four lemmas.

Lemma C.1 The values of (Ĉt, Ct, yt, Ft) in the steady state reached for t→ ∞ are

Ĉt = C̄ +

∫ t

−∞
e−κ(t−u)sdBC

u −
∫ t

−∞
e−(κ+ρ)(t−u)

[
β1pfσdB

D
u +

ϕβ2pfσdB
F
u

r + κ
+ s

(
1− β2γ2∆

ηΣη′

)
dBC

u

]
,

(C.1)

Ct = C̄ +

∫ t

−∞
e−κ(t−u)sdBC

u , (C.2)

yt =
b0 − b1C̄

b2
+

∫ t

−∞

b1
κ− b2

[
e−κ(t−u) − e−b2(t−u)

]
sdBC

u

−
∫ t

−∞

b1
κ+ ρ− b2

[
e−(κ+ρ)(t−u) − e−b2(t−u)

] [
β1pfσdB

D
u +

ϕβ2pfσdB
F
u

r + κ
+ s

(
1− β2γ2∆

ηΣη′

)
dBC

u

]
,

(C.3)

Ft = F̄ +

∫ t

−∞
e−κ(t−u)ϕσdBF

u , (C.4)
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Proof: The dynamics of (Ĉt, Ct, yt) are (A.3), (2.3) and (3.4). Integrating this system with initial

conditions (Ĉ0, C0, y0), and letting t → ∞, we find (C.1)-(C.3). Integrating (2.6) with initial

condition F0, and letting t→ ∞, we find (C.4).

Lemma C.2 The functions (G,H,K1,K2) satisfy

Covt(dRt, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′) = G(ψ1, ψ2, ψ3, t
′ − t, ν0)Σp

′
fdt, (C.5)

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, ψ̂1Ĉt′ + ψ̂2Ct′ + ψ̂3yt′

)
= H(ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3, t

′ − t, ν0), (C.6)

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, Ft′

)
= K1(ψ1, ψ3, t

′ − t, ν0)Σp
′
f , (C.7)

Cov
(
Ft, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′

)
= K2(ψ1, ψ3, t

′ − t, ν0)Σp
′
f , (C.8)

where t′ > t and

ν0(ω, t) ≡ e−ωt.

Proof: Since the covariance in (C.5) is conditional as of time t, it involves only the Brownian terms

in dRt, and not the drift terms (which are known at time t). Using (A.2) and (C.1)-(C.3), and

noting that the only non-zero covariances are between Brownian increments of the same process
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and as of time t, we find

Covt(dRt, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′)

=−
(
σ + β1γ1Σp

′
fpfσ

) [
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)]
β1σ

′p′fdt

− ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

) [
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)] ϕβ2
r + κ

σ′p′fdt

− sγ2

(
1 +

β2γ1∆

ηΣη′

)
Σp′f

[
(ψ1 + ψ2)e

−κ(t′−t) +
ψ3b1
κ− b2

(
e−κ(t′−t) − e−b2(t′−t)

)
−
[
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)](
1− β2γ2∆

ηΣη′

)]
sdt

=

{
−
[
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)]

×
[
β1

(
1 +

β1γ1∆

ηΣη′

)
+

(
ϕ2β2

(r + κ)2
− s2γ2

(
1− β2γ2∆

ηΣη′

))(
1 +

β2γ1∆

ηΣη′

)]

−
[
(ψ1 + ψ2)e

−κ(t′−t) +
ψ3b1
κ− b2

(
e−κ(t′−t) − e−b2(t′−t)

)]
s2γ2

(
1 +

β2γ1∆

ηΣη′

)}
Σp′fdt

=

{
−
[
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)]
β1

(
1 +

β1γ1∆

ηΣη′

)

−
[
(ψ1 + ψ2)e

−κ(t′−t) +
ψ3b1
κ− b2

(
e−κ(t′−t) − e−b2(t′−t)

)]
s2γ2

(
1 +

β2γ1∆

ηΣη′

)}
Σp′fdt,

where the third step follows from (3.7). This yields (C.5). Using (C.1)-(C.3) and noting that the

only non-zero covariances are between Brownian increments of the same process and as of the same
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time u ∈ (−∞, t], we find

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, ψ̂1Ĉt′ + ψ̂2Ct′ + ψ̂3yt′

)
=

∫ t

−∞

[
ψ1e

−(κ+ρ)(t−u) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t−u) − e−b2(t−u)

)]

×

[
ψ̂1e

−(κ+ρ)(t′−u) +
ψ̂3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−u) − e−b2(t′−u)

)][
β21 +

ϕ2β22
(r + κ)2

]
∆

ηΣη′
du

+

∫ u

−∞

[
(ψ1 + ψ2)e

−κ(t−u) +
ψ3b1
κ− b2

(
e−κ(t−u) − e−b2(t−u)

)
−
[
ψ1e

−(κ+ρ)(t−u) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t−u) − e−b2(t−u)

)](
1− β2γ2∆

ηΣη′

)]

×

[
(ψ̂1 + ψ̂2)e

−κ(t′−u) +
ψ̂3b1
κ− b2

(
e−κ(t′−u) − e−b2(t′−u)

)

−

[
ψ̂1e

−(κ+ρ)(t′−u) +
ψ̂3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−u) − e−b2(t′−u)

)](
1− β2γ2∆

ηΣη′

)]
s2du.

Using (C.1)-(C.4), we similarly find

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, Ft′

)
=−

∫ t

−∞

[
ψ1e

−(κ+ρ)(t−u) +
ψ3b1

κ+ ρ− b2

[
e−(κ+ρ)(t−u) − e−b2(t−u)

]]
e−κ(t′−u)

ϕ2β2Σp
′
f

r + κ
du

and

Cov
(
Ft, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′

)
=−

∫ t

−∞
e−κ(t−u)

[
ψ1e

−(κ+ρ)(t′−u) +
ψ3b1

κ+ ρ− b2

[
e−(κ+ρ)(t′−u) − e−b2(t′−u)

]] ϕ2β2Σp′f
r + κ

du.

Integrating all products of exponentials, and summing, we find (C.6), (C.7) and (C.8).

The covariance Covt(dRt, dR
′
t) between stock returns at times t and t′, derived in Proposition

3.5, can be expressed in terms of the function G. Since it involves only the drift terms in dRt′ and

not the Brownian terms (which have zero covariance with information up to time t′),

Covt(dRt, dR
′
t′) =Covt(dRt, Et′(dR

′
t′))

=Covt(dRt, γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′)pfΣdt

′

=G(γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0)Σp
′
fpfΣdtdt

′, (C.9)
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where the second step follows from (A.2) and the third from (C.5).

Lemma C.3 The expected dividend rate Ft has the following properties:

Covt(dRt, F
′
t′) =

ϕ2

r + κ

(
Σ+ β2γ1Σp

′
fpfΣ

)
ν0(κ, t

′ − t)dt, (C.10)

Cov(Ft, F
′
t′) =

ϕ2Σ

2κ
ν0(κ, t

′ − t). (C.11)

Proof: Since the covariance in (C.10) is conditional as of time t, it involves only the Brownian

terms in dRt, and not the drift terms. Using (A.2) and (C.4), and noting that the only non-zero

covariances are between the Brownian increments of the process Ft and as of time t, we find

Covt(dRt, F
′
t′) =

ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
ϕσ′e−κ(t′−t)dt,

which yields (C.10). Using (C.4), and noting that the only non-zero covariances are between the

Brownian increments of the process Ft and as of the same time u ∈ (−∞, t], we find

Cov(Ft, F
′
t′) =

∫ t

−∞
ϕ2Σe−κ(t−u)e−κ(t′−u)du

Integrating, we find (C.11).

Lemma C.4 Index-adjusted returns have the following properties:

Et(dR̂t) =

(
f +

k∆

ηΣη′

)
ΛtΣp

′
fdt =

[
rᾱ

(
f +

k∆

ηΣη′

)
+
(
γR1 Ĉt + γR2 Ct + γR3 yt − k1q̄1 − k2q̄2

)]
Σp′fdt,

(C.12)

Covt(dRt, dR̂
′
t) = Covt(dR̂t, dR̂

′
t) =

[
f

(
Σ− Ση′ηΣ

ηΣη′

)
+ kΣp′fpfΣ

]
dt, (C.13)

Covt(dR̂t, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′) = G(ψ1, ψ2, ψ3, t
′ − t, ν0)Σp

′
fdt, (C.14)

Covt(dRt, dR̂
′
t′) = Covt(dR̂t, dR̂

′
t′) = G(γR1 , γ

R
2 , γ

R
3 , t

′ − t, ν0)Σp
′
fpfΣdtdt

′, (C.15)

Covt(dR̂t, F
′
t′) =

ϕ2

r + κ

(
Σ− Ση′ηΣ

ηΣη′
+ β2γ1Σp

′
fpfΣ

)
ν0(κ, t

′ − t)dt, (C.16)

where t′ > t.
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Proof: Eqs. (3.8) and (5.3) imply that

dR̂t =dRt −
(fΣ+ Σp′fpfΣ)η

′

η(fΣ+ Σp′fpfΣ)η
′ ηdRt

=

(
I − Ση′η

ηΣη′

)
dRt, (C.17)

where I denotes the identity matrix. The first equality in (C.12) holds because

Et(dR̂t) =

(
I − Ση′η

ηΣη′

)
Et(dRt)

=

(
I − Ση′η

ηΣη′

)[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
(fΣ+ Σp′fpfΣ)η

′ + Λt(fΣ+ Σp′fpfΣ)p
′
f

]
dt

=

(
I − Ση′η

ηΣη′

)[
L1Ση

′ + Λt

(
f +

k∆

ηΣη′

)
Σp′f

]
dt

=

(
f +

k∆

ηΣη′

)
ΛtΣp

′
fdt, (C.18)

where the second step follows from (3.8) and (3.9). The second equality in (C.12) holds because of

(3.10). Note that the second and third steps in the derivation of (C.18) imply that

Et(dRt) =

[
L1Ση

′ +

(
f +

k∆

ηΣη′

)
ΛtΣp

′
f

]
dt

=

[
L1Ση

′ +

[
rᾱ

(
f +

k∆

ηΣη′

)
+
(
γR1 Ĉt + γR2 Ct + γR3 yt − k1q̄1 − k2q̄2

)]
Σp′f

]
dt.

(C.19)

Eq. (C.13) holds because of (3.8),

Covt(dRt, dR̂
′
t) =Covt(dRt, dR

′
t)

(
I − Ση′η

ηΣη′

)′
,

Covt(dR̂t, dR̂
′
t) =

(
I − Ση′η

ηΣη′

)
Covt(dRt, dR

′
t)

(
I − Ση′η

ηΣη′

)′
.

Eq. (C.14) holds because of (C.5) and

Covt(dR̂t, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′) =

(
I − Ση′η

ηΣη′

)
Covt(dRt, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′).

Eq. (C.15) holds because of (C.9),

Covt(dRt, dR̂
′
t′) = Covt(dRt, dR

′
t′)

(
I − Ση′η

ηΣη′

)′
,

45



and

Covt(dR̂t, dR̂
′
t′) =

(
I − Ση′η

ηΣη′

)
Covt(dRt, dR

′
t′)

(
I − Ση′η

ηΣη′

)′
.

Eq. (C.16) holds because of (C.10) and

Covt(dR̂t, F
′
t′) =

(
I − Ση′η

ηΣη′

)
Covt(dRt, F

′
t′).

Proof of Proposition 5.1: The numerator in (4.3) is equal to(
f +

k∆

ηΣη′

)[
E (Λt)E

(
wM̂
t Σp′f

)
+ Cov

(
Λt, w

M̂
t Σp′f

)]
=

(
f +

k∆

ηΣη′

)∫ t

t−τ

[
E (Λt)E

(
dR̂′

uΣp
′
f

)
+ Cov

(
Λt, dR̂

′
uΣp

′
f

)]
, (C.20)

where the second step follows from (5.2). The term in square brackets inside the integral in (C.20)

can be written as

E (Λt)E
(
dR̂′

uΣp
′
f

)
+ E

[
Covu(Λt, dR̂

′
uΣp

′
f )
]
+ Cov

[
Eu(Λt), Eu(dR̂

′
u)Σp

′
f

]
=E (Λt)E

(
dR̂′

uΣp
′
f

)
+ E

[
Covu(Λt, dR̂

′
uΣp

′
f )
]
+ Cov

[
Λt, Eu(dR̂

′
u)Σp

′
f

]
=E

(
dR̂′

u

)
E
(
ΛtΣp

′
f

)
+ E

[
Covu(dR̂

′
u,ΛtΣp

′
f )
]
+ Cov

[
Eu(dR̂

′
u),ΛtΣp

′
f

]
, (C.21)

where the second step follows because

Cov [Eu(Xt), Yu] =E [Eu(Xt)Yu]− E [Eu(Xt)]E(Yu)

=E [Eu(XtYu)]− E(Xt)E(Yu)

=E(XtYu)− E(Xt)E(Yu)

=Cov(Xt, Yu), (C.22)

for random variables (Xt, Yu) that depend on information at time t and u < t, respectively. Using

(C.12) and (C.21), we can write (C.20) as

1

dt

∫ t

t−τ

{
E(dR̂′

u)E
[
Et(dR̂t)

]
+ E

[
Covu

(
dR̂′

u, Et(dR̂t)
)]

+ Cov
[
Eu(dR̂

′
u), Et(dR̂t)

]}
. (C.23)
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Eq. (C.23) coincides with (5.5) because the covariance Covu(dR̂
′
u, dR̂t) involves only the drift terms

in dR̂t and not the Brownian terms. Eqs. (C.12) and (C.1)-(C.3) imply that

E(dR̂t) = E
[
Et(dR̂t)

]
= L2Σp

′
fdt, (C.24)

and hence

E(dR̂′
u)E(dR̂t) = L2

2pfΣ
2p′fdudt. (C.25)

Eq. (C.15) implies that

E
[
Covu

(
dR̂′

u, dR̂t

)]
=E

{
Tr
[
Covu

(
dR̂u, dR̂

′
t

)]}
=G(γR1 , γ

R
2 , γ

R
3 , t

′ − t, ν0)Tr
(
Σp′fpfΣ

)
dudt

=G(γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0)pfΣ
2p′fdudt, (C.26)

where the second step follows from (C.9) and the third because matrices inside a trace commute.

Eq. (C.12) implies that

Cov
[
Eu(dR̂

′
u), Et(dR̂t)

]
=Cov

(
γR1 Ĉu + γR2 Cu + γR3 yu, γ

R
1 Ĉt + γR2 Ct + γR3 yt

)
pfΣ

2p′fdudt

=H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , t− u, ν0)pfΣ

2p′fdudt, (C.27)

where the second step follows from (C.6). Substituting (C.25)-(C.27) into (5.5), and integrating,

we find the numerator in (5.4).

The term inside the square root in the denominator in (4.3) is equal to

f

E (wM̂
t

)
ΣE

(
wM̂ ′
t

)
−

[
E
(
wM̂
t

)
Ση′
]2

ηΣη′

+ k
[
E
(
wM̂
t

)
Σp′f

]2

+ f

Cov (wM̂
t ,Σw

M̂ ′
t

)
−
V ar

(
wM̂
t Ση′

)
ηΣη′

+ kV ar
(
wM̂
t Σp′f

)

=

∫ t

t−τ

∫ t

t−τ
(T1 + T2)

=

∫ t

t−τ

∫ t

t−τ
T1 + 2

∫
t−τ≤u′<u≤t

T2 +

∫ t

t−τ
T3, (C.28)
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where

T1 ≡f

[
E(dR̂′

u′)ΣE(dR̂u)−
E(dR̂′

u′)Ση′E(dR̂′
u)Ση

′

ηΣη′

]
+ kE(dR̂′

u′)Σp′fE(dR̂′
u)Σp

′
f ,

T2 ≡f

[
Cov(dR̂′

u′ ,ΣdR̂u)−
Cov(dR̂′

u′Ση′, dR̂′
uΣη

′)

ηΣη′

]
+ kCov(dR̂′

u′Σp′f , dR̂
′
uΣp

′
f ),

T3 ≡f

[
Cov(dR̂′

u,ΣdR̂u)−
V ar(dR̂′

uΣη
′)

ηΣη′

]
+ kV ar(dR̂′

uΣp
′
f ),

and the second step in (C.28) follows from (5.2), and the third from separating non-diagonal from

diagonal terms. Eq. (C.24) implies that

T1 = L2
2∆3du

′du. (C.29)

We can write (T2, T3) as

T2 =T2a + T2b, (C.30)

T3 =T3a + T3b = T3a, (C.31)

where

T2a ≡f

E [Covu′(dR̂′
u′ ,ΣdR̂u)

]
−
E
[
Covu′(dR̂′

u′Ση′, dR̂′
uΣη

′)
]

ηΣη′


+ kE

[
Covu′(dR̂′

u′Σp′f , dR̂
′
uΣp

′
f )
]
,

T2b ≡f

Cov [Eu′(dR̂′
u′),ΣEu(dR̂u)

]
−
Cov

[
Eu′(dR̂′

u′)Ση′, Eu(dR̂
′
u)Ση

′
]

ηΣη′


+ kCov

[
Eu′(dR̂′

u′)Σp′f , Eu(dR̂
′
u)Σp

′
f

]
,

T3a ≡f

E [Covu(dR̂′
u,ΣdR̂u)

]
−
E
[
V aru(dR̂

′
uΣη

′)
]

ηΣη′

+ kE
[
V aru(dR̂

′
uΣp

′
f )
]
,

T3b ≡f

Cov [Eu(dR̂
′
u),ΣEu(dR̂u)

]
−
V ar

[
Eu(dR̂

′
u)Ση

′
]

ηΣη′

+ kV ar
[
Eu(dR̂

′
u)Σp

′
f

]
.
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(The term Eu′(dR̂u) can be replaced by Eu(dR̂u) in T2b because of (C.22), and the second step in

(C.31) follows because T3a is of order du and T3b of order (du)
2.) Eq. (C.15) implies that

T2a =f

E {Tr [Covu′(dR̂u′ , dR̂′
uΣ)

]}
−
E
[
Covu′(ηΣdR̂u′ , dR̂′

uΣη
′)
]

ηΣη′


+ kE

[
Covu′(pfΣdR̂

′
u′ , dR̂′

uΣp
′
f )
]

=f

E {Tr [Covu′(dR̂u′ , dR̂′
u)Σ

]}
−
ηΣE

[
Covu′(dR̂u′ , dR̂′

u)
]
Ση′

ηΣη′


+ kpfΣE

[
Covu′(dR̂′

u′ , dR̂′
u)
]
Σp′f

=G(γR1 , γ
R
2 , γ

R
3 , u− u′, ν0)

{
f

[
Tr(Σp′fpfΣ

2)−
(ηΣ2p′f )

2

ηΣη′

]
+ k(pfΣ

2p′f )
2

}
du′du

=G(γR1 , γ
R
2 , γ

R
3 , u− u′, ν0)∆3du

′du, (C.32)

where the fourth step follows because matrices inside a trace commute. Similarly (C.13) implies

that

T3a =f

E {Tr [Covu(dR̂u, dR̂
′
u)Σ

]}
−
ηΣE

[
Covu(dR̂u, dR̂

′
u))
]
Ση′

ηΣη′


+ kpfΣE

[
Covu(dR̂u, dR̂

′
u))
]
Σp′f

=∆6du. (C.33)

Eq. (C.12) implies that

T2b =Cov
(
γR1 Ĉu′ + γR2 Cu′ + γR3 yu′ , γR1 Ĉu + γR2 Cu + γR3 yu

)
∆3du

′du

=H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− u′, ν0)∆3du

′du, (C.34)

where the second step follows from (C.6). Substituting (C.29)-(C.34) into (C.28), and integrating,

we find the term inside the square root in the denominator in (5.4).

Proof of Proposition 5.2: Proceeding as in the proof of Proposition 5.1, we find the following

counterpart of (5.5):

1

dt

∫ t

t−τ

{
E
[
Covu(dR

′
u, dR̂t)

]
+ Cov

[
Eu(dR

′
u), Et(dR̂t)

]
+ E(dR′

u)E(dR̂t)
}
. (C.35)
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Since (C.15) shows that Covt(dR
′
t, dR̂t′) = Covt(dR̂t, dR̂

′
t′), the first term inside the curly bracket

in (C.35) is equal to its counterpart in (5.5). Eqs. (C.12) and (C.19) imply that

Et(dRt) = L1Ση
′dt+ Et(dR̂t) (C.36)

⇒E(dRt) = L1Ση
′dt+ E(dR̂t)

⇒E(dRt) =
(
L1Ση

′ + L2Σp
′
f

)
dt, (C.37)

where the third step follows from (C.24). Since (C.36) shows that Et(dRt) is equal to Et(dR̂t) plus

a constant, the second term inside the curly bracket in (C.35) is equal to its counterpart in (5.5).

Moreover, (C.24) and (C.37) imply that the third term is equal to its counterpart in (5.5) plus

L1L2ηΣ
2p′fdudt. Integrating (C.35), we find that the numerator of the Sharpe ratio is as in the

proposition.

Proceeding as in the proof of Proposition 5.1, we find (C.28), with (T1, T2, T3) evaluated for

raw returns (dRu′ , dRu) rather than index-adjusted returns (dR̂u′ , dR̂u). Since (C.15) shows that

Covt(dRt, dR
′
t′) = Covt(dR̂t, dR̂

′
t′), (T2a, T3a) are the same as with index-adjusted returns. Since

(C.36) shows that Et(dRt) is equal to Et(dR̂t) plus a constant, T2b is also the same as with index-

adjusted returns. Eq. (3.8) implies that

T3a =f

[
E
{
Tr
[
Covu(dRu, dR

′
u)Σ

]}
− ηΣE [Covu(dRu, dR

′
u))] Ση

′

ηΣη′

]
+ kpfΣE

[
Covu(dRu, dR

′
u))
]
Σp′f

=

{
f

[
Tr
[
(fΣ+ kΣp′fpfΣ)Σ

]
−
ηΣ(fΣ+ kΣp′fpfΣ)Ση

′

ηΣη′

]
+ kpfΣ(fΣ+ kΣp′fpfΣ)Σp

′
f

}
du

=

(
∆6 + f

∆1

ηΣη′

)
du.

Therefore, T3a is equal to its counterpart under index-adjusted returns plus f ∆1
ηΣη′du. Eq. (C.37)

implies that

T1 =

{
(L1ηΣ+ L2pfΣ)Σ(L1Ση

′ + L2Σp
′
f )−

[(L1ηΣ+ L2pfΣ)Ση
′]2

ηΣη′

+k
[
(L1ηΣ+ L2pfΣ)Σp

′
f

]2}
du′du

=
(
L2
1∆1 + 2L1L2∆2 + L2

2∆3

)
du′du.
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Therfore, T1 is equal to its counterpart under index-adjusted returns plus
(
L2
1∆1 + 2L1L2∆2

)
du′du.

Integrating (C.28), we find that the term inside the square root in the denominator of the Sharpe

ratio is as in the proposition.

Proof of Proposition 5.3: We first show that

Σiθ′ = θ̄Σiη′ + v′i (C.38)

for all i ∈ N, where

θ̄ ≡θn + θn′

ηn + ηn′
,

vi ≡(vi1, .., viN ),

vin ≡(Σnn − Σnn′)iϵn,

ϵn ≡θn − θ̄ηn.

We proceed by induction on i. Eq. (C.38) holds for i = 0. To show that it holds for i+1 if it holds

for i, it suffices to show that

Σv′i = v′i+1. (C.39)

The n’th element of Σv′i is

(Σv′i)n =
∑

m∈{1,..,N}

Σnmvim

=
∑

m∈{1,..,N}\{n,n′}

Σnmvim +Σnnvin +Σnn′vin′ . (C.40)

Eqs. Σnn = Σn′n′ and

ϵn + ϵn′ = θn + θn′ − θ̄(ηn + ηn′) = 0 (C.41)

imply that

vin + vin′ = (Σnn − Σnn′)iϵn + (Σnn − Σnn′)iϵn′ = 0. (C.42)

Eq. (C.42) implies that

Σnnvin +Σnn′vin′ = (Σnn − Σnn′)vin = (Σnn − Σnn′)i+1ϵn = vi+1,n. (C.43)
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Moreover, for each pair (m,m′) ̸= (n, n′), (C.42) and Σnm = Σnm′ imply that

Σnmvim +Σnm′vim′ = Σnm(vim − vim′) = 0. (C.44)

Eqs. (C.40), (C.43) and (C.44) imply (C.39).

Eqs. (C.38), (C.42) and ηn = ηn′ imply that

ηΣiθ′ = θ̄ηΣiη′,

which in turn implies that

ηΣip′f = ηΣiθ′ − ηΣθ′

ηΣη′
ηΣiη′ = ηΣiθ′ − θ̄ηΣiη′ = 0,

∆1 = f

[
ηΣ3η′ − (ηΣ2η′)2

ηΣη′

]
,

and ∆2 = 0. Since ηΣ2p′f = 0, Proposition 5.2 implies that the numerator of the Sharpe ratio

is equal under raw and index-adjusted returns. Moreover, the denominator is larger under raw

returns because ∆2 = 0 and because the Cauchy-Schwarz inequality applied to the vectors Σ
1
2 η′

and Σ
3
2 η′ implies that ∆1 ≥ 0. Therefore, if momentum yields a positive Sharpe ratio under raw

returns, it yields a higher Sharpe ratio under index-adjusted returns. This inequality is strict when

the Cauchy-Schwarz inequality is strict, which is the case when the vectors Σ
1
2 η′ and Σ

3
2 η′ are not

collinear, i.e., Σ
1
2 η′ is not an eigenvector of Σ.

D Value

Proof of Lemma 6.1: Integrating the definition of returns, dRt = dDt + dSt − rStdt, we find

St =

∫ t′

t
(dDu − dRu)e

−r(u−t) + St′e
−r(t′−t).

Taking expectations as of time t, and letting t′ → ∞, we find the first equality in (6.1). The second

equality follows from

Et(dRt′) = Et [Et′(dRt′)] = Et

[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Covt′(dRt′ , ηdRt′) + Λt′Covt′(dRt′ , pfdRt′)

]
,
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where the second step follows from (3.9). The second equality in each of (6.2) and (6.3) follows

from (3.8).

Proof of Proposition 6.1: The numerator in (4.3) is equal to(
f +

k∆

ηΣη′

)[
E (Λt)E

(
wV̂
t Σp

′
f

)
+ Cov

(
Λt, w

V̂
t Σp

′
f

)]
=

(
f +

k∆

ηΣη′

)[
E
(
wV̂
t

)
E
(
ΛtΣp

′
f

)
+ Cov

(
wV̂
t ,ΛtΣp

′
f

)]
=

(
f +

k∆

ηΣη′

)[
E
(
Γ′
2t

)
E
(
ΛtΣp

′
f

)
+ Cov

(
Γ′
2t,ΛtΣp

′
f

)
− Cov

(
(1− ϵ)(Ft − F̄ )′

r + κ
,ΛtΣp

′
f

)]
,

(D.1)

where the third step follows from (6.8) and E(Ft) = F̄ (implied by (C.4)). Eq. (D.1) coincides with

(6.10) because of (C.12). Eqs. (3.10), (6.3) and (C.1)-(C.3) imply that

E(Γ2t) =

(
f +

k∆

ηΣη′

)[∫ ∞

t
E(Λt′)e

−r(t′−t)dt′
]
Σp′f =

(
f +

k∆

ηΣη′

)
E(Λt)

r
Σp′f =

L2

r
Σp′f . (D.2)

Combining (C.24) and (D.2), we find

E(Γ′
2t)E(dR̂t) =

L2
2

r
pfΣ

2p′fdt. (D.3)

Eqs. (3.1), (3.2), (6.1) and (6.2) imply that

Γ2t = a0 + (γ1Ĉt + γ2Ct + γ3yt)Σp
′
f − αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′. (D.4)

Eqs. (C.12) and (D.4) imply that

Cov
[
Γ′
2t, Et(dR̂t)

]
=Cov

(
γ1Ĉt + γ2Ct + γ3yt, γ

R
1 Ĉt + γR2 Ct + γR3 yt

)
pfΣ

2p′fdt

=H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , 0, ν0)pfΣ

2p′fdt, (D.5)

where the second step follows from (C.6). Eq. (C.12) similarly implies that

Cov
[
F ′
t , Et(dR̂t)

]
=Cov

(
F ′
t , γ

R
1 Ĉt + γR2 Ct + γR3 yt

)
Σp′fdt

=Cov
(
γR1 Ĉt + γR2 Ct + γR3 yt, Ft

)′
Σp′fdt

=K1(γ
R
1 , γ

R
3 , 0, ν0)pfΣ

2p′fdt, (D.6)
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where the third step follows from (C.7). Substituting (D.3)-(D.6) into (6.10), we find the numerator

in (6.9).

The term inside the square root in the denominator in (4.3) is equal to

f

E (wV̂
t

)
ΣE

(
wV̂ ′
t

)
−

[
E
(
wV̂
t

)
Ση′
]2

ηΣη′

+ k
[
E
(
wV̂
t

)
Σp′f

]2

+ f

Cov (wV̂
t ,Σw

V̂ ′
t

)
−
V ar

(
wV̂
t Ση

′
)

ηΣη′

+ kV ar
(
wV̂
t Σp

′
f

)

=f

[
E
(
Γ′
2t

)
ΣE (Γ2t)−

[E (Γ′
2t) Ση

′]2

ηΣη′

]
+ k

[
E
(
Γ′
2t

)
Σp′f

]2
+ f

[
Cov

(
Γ′
2t,ΣΓ2t

)
− V ar (Γ′

2tΣη
′)

ηΣη′

]
+ kV ar

(
Γ′
2tΣp

′
f

)
− 2(1− ϵ)

r + κ

{
f

[
Cov

(
Γ′
2t,ΣFt

)
− Cov (Γ′

2tΣη
′, F ′

tΣη
′)

ηΣη′

]
+ kCov

(
Γ′
2tΣp

′
f , F

′
tΣp

′
f

)}

+
(1− ϵ)2

(r + κ)2

{
f

[
Cov

(
F ′
t ,ΣFt

)
− V ar (F ′

tΣη
′)

ηΣη′

]
+ kV ar

(
F ′
tΣp

′
f

)}
, (D.7)

where the second step follows from (6.8) and E(Ft) = F̄ . Eq. (D.2) implies that

f

[
E
(
Γ′
2t

)
ΣE (Γ2t)−

[E (Γ′
2t)Ση

′]2

ηΣη′

]
+ k

[
E
(
Γ′
2t

)
Σp′f

]2
=
L2
2

r2
∆3. (D.8)

The remaining terms in (D.7) are

f

[
Cov

(
Γ′
2t,ΣΓ2t

)
− V ar (Γ′

2tΣη
′)

ηΣη′

]
+ kV ar

(
Γ′
2tΣp

′
f

)
=V ar(γ1Ĉt + γ2Ct + γ3yt)∆3

=H(γ1, γ2, γ3, γ1, γ2, γ3, 0, ν0)∆3, (D.9)
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where the first step follows from (D.4) and the second from (C.6),

f

[
Cov

(
Γ′
2t,ΣFt

)
− Cov (Γ′

2tΣη
′, F ′

tΣη
′)

ηΣη′

]
+ kCov

(
Γ′
2tΣp

′
f , F

′
tΣp

′
f

)
=f

[
Cov

(
Γ′
2t,ΣFt

)
− Cov (Γ′

2tΣη
′, η′ΣFt)

ηΣη′

]
+ kCov

(
Γ′
2tΣp

′
f , pfΣFt

)
=

{
f

[
pfΣ

2 −
pfΣ

2η′η′Σ

ηΣη′

]
+ kpfΣ

2p′fpfΣ

}
Cov

(
γ1Ĉt + γ2Ct + γ3yt, Ft

)
=K1(γ1, γ3, 0, ν0)∆3, (D.10)

where the second step follows from (D.4) and the third from (C.7), and

f

[
Cov

(
F ′
t ,ΣFt

)
− V ar (F ′

tΣη
′)

ηΣη′

]
+ kV ar

(
F ′
tΣp

′
f

)
=f

[
Tr
[
Cov

(
ΣFt, F

′
t

)]
− Cov (ηΣFt, F

′
tΣη

′)

ηΣη′

]
+ kCov

(
pfΣFt, F

′
tΣp

′
f

)
=f

[
Tr
[
ΣCov

(
Ft, F

′
t

)]
− ηΣCov (Ft, F

′
t)Ση

′

ηΣη′

]
+ kpfΣCov

(
Ft, F

′
t

)
Σp′f

=
ϕ2

2κ

{
f

[
Tr
(
Σ2
)
− ηΣ3η′

ηΣη′

]
+ kpfΣ

3p′f

}

=
ϕ2

2κ
∆4, (D.11)

where the third step follows from (C.11). Substituting (D.8)-(D.11) into (D.7), we find the term

inside the square root in the denominator in (6.9).

We finally show that for small s, the first and second terms in (6.10) yield positive value

profits. From (6.9), this amounts to showing that H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , 0, ν0) is positive and

K1(γ
R
1 , γ

R
3 , 0, ν0) is negative. Vayanos and Woolley (VW 2011) show that for small s, (b1, b2, γ1)

are of order one and positive, (γ3, γ
R
3 ) of order one and negative, (γ2, γ

R
1 , γ

R
2 , ρ, β1) of order s

2, and

β2 of order smaller than s2. Hence,

H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , 0, ν0)

=

[
γR3 b1

2κ(κ− b2)

(
γ1 −

γ3b1
κ+ b2

)
− γR3 b1

(κ+ b2)(κ− b2)

(
γ1 −

γ3b1
2b2

)]
β21

∆

ηΣη′
+ o(s4)

=− γR3 γ1b1β
2
1∆

2κ(κ+ b2)ηΣη′
+ o(s4),
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and is positive for small s. Moreover,

K1(γ
R
1 , γ

R
3 , 0, ν0) =

γR3 b1ϕ
2β2

2κ(κ+ b2)(r + κ)
+ o(β2),

and is negative for small s.

Proof of Proposition 6.2: Eqs. (6.10) and (D.7) hold under raw prices, but with Γ1t+Γ2t instead

of Γ2t. Eq. (6.2) implies that Γ1t is equal to the constant L1
r Ση′. Therefore, the additional terms

in the case of (6.10), i.e., the numerator in (6.9), are

1

dt
Γ′
1tE(dR̂t) =

L1L2

r
ηΣ2p′f ,

where the second step follows from (C.24). Moreover, the additional terms in the case of (D.7),

i.e., the term inside the square root in the denominator in (6.9), are

f

[
Γ′
1tΣΓ1t −

(Γ′
1tΣη

′)2

ηΣη′

]
+ k

(
Γ′
1tΣp

′
f

)2
+ 2

{
f

[
Γ′
1tΣE (Γ2t)−

Γ′
1tΣη

′E (Γ′
2t)Ση

′

ηΣη′

]
+ kΓ′

1tΣp
′
fE
(
Γ′
2t

)
Σp′f

}

=
L2
1

r2
∆1 + 2

L1L2

r2
∆2,

where the second step follows from (D.2).

Proof of Proposition 6.3: Proceeding as in the proof of Proposition 5.3, we find ηΣ2p′f = 0,

∆1 ≥ 0 and ∆2 = 0. The numerator of the Sharpe ratio is thus equal under raw and index-adjusted

prices, and the denominator is larger under raw prices. Therefore, if value yields a positive Sharpe

ratio under raw prices, it yields a higher Sharpe ratio under index-adjusted prices. The condition

for the inequality to be strict follows by the same argument as in the proof of Proposition 5.3.

E Combining Momentum and Value

Lemma E.1 The solution to the problem of maximizing (4.4) subject to (7.1) is (4.7) and

ŷi =
E(ŵi

tdRt)V ar(ŵ
j
tdRt)−E(ŵj

tdRt)Cov(ŵ
A
t dRt, ŵ

B
t dRt)

a
[
V ar(ŵA

t dRt)V ar(ŵB
t dRt)− Cov(ŵA

t dRt, ŵB
t dRt)2

] , (E.1)
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for i, j ∈ {A,B} and i ̸= j. The investor’s maximum utility is given by (4.9), where SRw is replaced

by SRwAB .

Proof: Substituting (7.1) into (4.4), and noting that ηdRt is orthogonal with (ŵA
t dRt, ŵ

B
t dRt), we

can write the investor’s maximization problem as

max
ˆ̂x,ŷ

ˆ̂xE(ηdRt) +
∑

i=A,B

ŷiE(ŵi
tdRt)

−a
2

ˆ̂x2V ar(ηdRt) +
∑

i=A,B

(ŷi)2V ar(ŵtdRt) + 2ŷAŷBCov(ŵA
t dRt, ŵ

B
t dRt)

 . (E.2)

Eqs. (4.7) and (E.1) follow from (E.2). Substituting (4.7) and (E.1) into the investor’s utility, which

is the term in curly brackets in (E.2), we find (4.9) where SRw is replaced by SRwAB . Comparison

with (4.9) implies that SRwAB is the Sharpe ratio of the optimal portfolio of (wA
t , w

B
t ).

Proof of Proposition 7.1: The covariance between two general trading strategies (wA
t , w

B
t ) is

Cov
(
ŵA
t dRt, ŵ

B
t dRt

)
=E

[
Covt

(
ŵA
t dRt, ŵ

B
t dRt

)]
+ Cov

[
Et

(
ŵA
t dRt

)
, Et

(
ŵB
t dRt

)]
=E

[
Covt

(
ŵA
t dRt, ŵ

B
t dRt

)]
=E

[(
wA
t − wA

t Ση
′

ηΣη′
η

)(
fΣ+ kΣp′fpfΣ

)(
wB
t − wB

t Ση
′

ηΣη′
η

)′]
dt

=

{
f

[
E
(
wA
t Σw

B′
t

)
−
E
(
wA
t Ση

′wB
t Ση

′)
ηΣη′

]
+ kE

(
wA
t Σp

′
fw

B
t Σp

′
f

)}
dt

=

{
f

[
E
(
wA
t

)
ΣE

(
wB′
t

)
−
E
(
wA
t

)
Ση′E

(
wB
t

)
Ση′

ηΣη′

]
+ kE

(
wA
t

)
Σp′fE

(
wB
t

)
Σp′f

+ f

[
Cov

(
wA
t ,Σw

B′
t

)
−
Cov

(
wA
t Ση

′, wB
t Ση

′)
ηΣη′

]
+ kCov

(
wA
t Σp

′
f , w

B
t Σp

′
f

)}
dt, (E.3)

where the second step follows because E
[
Covt

(
ŵA
t dRt, ŵ

B
t dRt

)]
is of order dt and Cov

[
Et

(
ŵA
t dRt

)
,

Et

(
ŵB
t dRt

)]
of order (dt)2, and the third step follows from (3.8) and (B.1).
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Using (5.2), (6.8), E(Ft) = F̄ and (E.3), we find

Cov
(
ŵM̂
t dRt, ŵ

V̂
t dRt

)
=

∫ t

t−τ

(
T1 + T2 −

1− ϵ

r + κ
T3

)
dt, (E.4)

where

T1 ≡f

[
E(dR̂′

u)ΣE(Γ2t)−
E(dR̂′

u)Ση
′E(Γ′

2t)Ση
′

ηΣη′

]
+ kE(dR̂′

u)Σp
′
fE(Γ′

2t)Σp
′
f ,

T2 ≡f

[
Cov(dR̂′

u,ΣΓ2t)−
Cov(dR̂′

uΣη
′,Γ′

2tΣη
′)

ηΣη′

]
+ kCov(dR̂′

uΣp
′
f ,Γ

′
2tΣp

′
f ),

T3 ≡f

[
Cov(dR̂′

u,ΣFt)−
Cov(dR̂′

uΣη
′, F ′

tΣη
′)

ηΣη′

]
+ kCov(dR̂′

uΣp
′
f , F

′
tΣp

′
f ).

Eqs. (C.24) and (D.2) imply that

T1 =
L2
2

r
∆3du. (E.5)

We can write (T2, T3) as

T2 =T2a + T2b, (E.6)

T3 =T3a + T3b, (E.7)

where

T2a ≡f

E [Covu(dR̂′
u,ΣΓ2t)

]
−
E
[
Covu(dR̂

′
uΣη

′,Γ′
2tΣη

′)
]

ηΣη′

+ kE
[
Covu(dR̂

′
uΣp

′
f ,Γ

′
2tΣp

′
f )
]
,

T2b ≡f

Cov [Eu(dR̂
′
u),ΣΓ2t

]
−
Cov

[
Eu(dR̂

′
u)Ση

′,Γ′
2tΣη

′
]

ηΣη′

+ kCov
[
Eu(dR̂

′
u)Σp

′
f ,Γ

′
2tΣp

′
f

]
,

T3a ≡f

E [Covu(dR̂′
u,ΣFt)

]
−
E
[
Covu(dR̂

′
uΣη

′, F ′
tΣη

′)
]

ηΣη′

+ kE
[
Covu(dR̂

′
uΣp

′
f , F

′
tΣp

′
f )
]
,

T3b ≡f

Cov [Eu(dR̂
′
u),ΣFt

]
−
Cov

[
Eu(dR̂

′
u)Ση

′, F ′
tΣη

′
]

ηΣη′

+ kCov
[
Eu(dR̂

′
u)Σp

′
f , F

′
tΣp

′
f

]
.
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(The terms Eu(Γ2t) in T2b and Eu(Ft) in T3b can be replaced by Γ2t and Ft, respectively, because

of (C.22).) Eq. (D.4) implies that

T2a =E
[
Covu(dR̂

′
u, γ1Ĉt + γ2Ct + γ3yt)

]{
f

[
Σ2p′f −

Ση′pfΣ
2η′

ηΣη′

]
+ kΣp′fpfΣ

2p′f

}
=G(γ1, γ2, γ3, t− u, ν0)∆3du, (E.8)

where the second step follows from (C.14). Eqs. (C.12) and (D.4) imply that

T2b =E
[
Covu(γ

R
1 Ĉu + γR2 Cu + γR3 yu, γ1Ĉt + γ2Ct + γ3yt)

]
∆3du

=H(γR1 , γ
R
2 , γ

R
3 , γ1, γ2, γ3, t− u, ν0)∆3du, (E.9)

where the second step follows from (C.6). Eq. (C.12) implies that

T3b =f

Cov [Eu(dR̂
′
u),ΣFt

]
−
Cov

[
Eu(dR̂

′
u)Ση

′, ηΣFt

]
ηΣη′

+ kCov
[
Eu(dR̂

′
u)Σp

′
f , pfΣFt

]

=

{
f

[
pfΣ

2 −
pfΣ

2η′ηΣ

ηΣη′

]
+ kpfΣ

2p′fpfΣ

}
E
[
Covu(γ

R
1 Ĉu + γR2 Cu + γR3 yu, Ft)

]
du

=K1(γ
R
1 , γ

R
3 , t− u, ν0)∆3du, (E.10)

where the third step follows from (C.7). Finally,

T3a =f

E {Tr [Covu(dR̂u, F
′
tΣ)
]}

−
E
[
Covu(ηΣdR̂u, F

′
tΣη

′)
]

ηΣη′

+ kE
[
Covu(pfΣdR̂u, F

′
tΣp

′
f )
]

=f

E {Tr [Covu(dR̂u, F
′
t)Σ
]}

−
ηΣE

[
Covu(dR̂u, F

′
t)
]
Ση′

ηΣη′

+ kpfΣE
[
Covu(dR̂u, F

′
t)
]
Σp′f

=
ϕ2

r + κ
ν0(κ, t− u)(∆5 + β2γ1∆3)du, (E.11)

where the third step follows from (C.16) and because matrices inside a trace commute. Substituting

(E.5)-(E.11) into (E.4), and integrating, we find (7.3).

We finally show that for small s, the temporal variation in weights generates negative covariance

between momentum and value returns. The effects of temporal variation are the first, second, third
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and fifth term in (7.3). Using the asymptotics in the proof of Proposition 6.1, we find

G(γ1, γ2, γ3, τ, ν1) = −
[
γ1ν1(κ, τ) +

γ3b1
κ− b2

(ν1(κ, τ)− ν1(b2, τ))

]
β1 + o(s2),

H(γR1 , γ
R
2 , γ

R
3 , γ1, γ2, γ3, τ, ν1) = o(s2),

1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , τ, ν1) = o(s2),

(1− ϵ)ϕ2

(r + κ)2
ν1(κ, τ)(∆5 + β2γ1∆3) =

(1− ϵ)ϕ2

(r + κ)2
ν1(κ, τ)∆5 + o(1).

Therefore, if ϵ = 1, the dominant term is G(γ1, γ2, γ3, τ, ν1) < 0, and if ϵ = 0, the dominant term is

− (1−ϵ)ϕ2

(r+κ)2
ν1(κ, τ)(∆5 + β2γ1∆3) < 0.

Proof of Proposition 7.2: Proceeding as in the proof of Proposition 7.1, we find (E.4), with

(T1, T2, T3) evaluated for raw returns dRu and the total risk discount Γ1t+Γ2t, rather than for index-

adjusted returns dR̂u and the discount Γ2t. Eq. (6.2) implies that Γ1t is equal to the constant
L1
r Ση′.

Therefore, it does not affect (T2a, T2b, T3a, T3b). Since (C.5) and (C.14) imply that Covt(dR̂t, ψ1Ĉt′+

ψ2Ct′ +ψ3yt′) = Covt(dRt, ψ1Ĉt′ +ψ2Ct′ +ψ3yt′), T2a is the same as under index-adjustment. The

variables (T2b, T3b) are also the same since (C.36) shows that Et(dRt) is equal to Et(dR̂t) plus a

constant. The variable T3a is

T3a =f

[
E
{
Tr
[
Covu(dRu, F

′
tΣ)
]}

− E [Covu(ηΣdRu, F
′
tΣη

′)]

ηΣη′

]
+ kE

[
Covu(pfΣdRu, F

′
tΣp

′
f )
]

=f

[
E
{
Tr
[
Covu(dRu, F

′
t)Σ
]}

− ηΣE [Covu(dRu, F
′
t)] Ση

′

ηΣη′

]
+ kpfΣE

[
Covu(dRu, F

′
t)
]
Σp′f

=
ϕ2

r + κ
ν0(κ, t− u)(∆4 + β2γ1∆3)du, (E.12)

where the third step follows from (C.10). Therefore, T3a is equal to its counterpart under index-

adjustment plus ϕ2

r+κν0(κ, t− u) ∆1
ηΣη′du. Eqs. (C.37) and (D.2) imply that

T1 =
1

r

{
(L1ηΣ+ L2pfΣ)Σ(L1Ση

′ + L2Σp
′
f )−

[(L1ηΣ+ L2pfΣ)Ση
′]2

ηΣη′

+k
[
(L1ηΣ+ L2pfΣ)Σp

′
f

]2}
du

=
1

r

(
L2
1∆1 + 2L1L2∆2 + L2

2∆3

)
du.
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Therfore, T1 is equal to its counterpart under index-adjustment plus 1
r

(
L2
1∆1 + 2L1L2∆2

)
du. In-

tegrating (E.4), we find the additional term (7.5).

F Momentum and Value Over Long Horizons

The motivation for the use of the Sharpe ratio is as follows. Consider an investor who can invest

in the riskless asset, the market index η and the strategy wt, and has mean-variance preferences

E(∆Wt,T )−
a

2
V ar(∆Wt,T ), (F.1)

over the increment ∆Wt,T ≡ Wt+T e
−rT −Wt in wealth. The investor chooses an investment ŷ in

the strategy and an overall exposure ˆ̂x to the index at time t. We assume that these are chosen

to grow at the riskless rate, so at time u the investment in the strategy is ŷer(u−t) and the overall

exposure to the index is ˆ̂xer(u−t). The investor’s budget constraint is (4.5) and integrates to

∆Wt,T = ˆ̂x

∫ t+T

t
ηdRu + ŷ

∫ t+T

t
ŵudRu. (F.2)

Substituting (F.2) into (F.1), and assuming that (
∫ t+T
t ηdRu,

∫ t+T
t ŵudRu) are orthogonal, we can

write the investor’s maximization problem as

max
ˆ̂x,ŷ

{
ˆ̂xE

(∫ t+T

t
ηdRu

)
+ ŷE

(∫ t+T

t
ŵudRu

)
− a

2

[
ˆ̂x2V ar

(∫ t+T

t
ηdRu

)
+ ŷ2V ar

(∫ t+T

t
ŵudRu

)]}
.

(F.3)

The orthogonality of (
∫ t+T
t ηdRu,

∫ t+T
t ŵudRu) does not generally follow from that of (ηdRt, ŵtdRt)

because there can be lead-lag effects: ηdRt can be correlated with ŵudRu for u > t. Such a

correlation can be ruled out under restrictions on the set of strategies and the asset structure. If

(
∫ t+T
t ηdRu,

∫ t+T
t ŵudRu) are orthogonal, then we can show that the investor’s maximum utility

depends on the characteristics of the strategy wt only through the Sharpe ratio.
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Lemma F.1 The solution to the maximization problem (F.3) is

ˆ̂x =
E
(∫ t+T

t ηdRu

)
aV ar

(∫ t+T
t ηdRu

) , (F.4)

ŷ =
E
(∫ t+T

t ŵudRu

)
aV ar

(∫ t+T
t ŵudRu

) . (F.5)

The investor’s maximum utility is

E
(∫ t+T

t ηdRu

)2
2aV ar

(∫ t+T
t ηdRu

) +
(SRw,T )

2 T

2a
. (F.6)

Proof: The proof is the same as for Lemma 4.1.

To prove Lemma 8.1, we first prove the following lemma:

Lemma F.2 If the random variables {Xi}i=1,2,3,4 are jointly normal, then

Cov(X1X2, X3) =E(X1)Cov(X2, X3) + E(X2)Cov(X1, X3) (F.7)

Cov(X1X2, X3X4) =E(X1)E(X3)Cov(X2, X4) + E(X1)E(X4)Cov(X2, X3)

+ E(X2)E(X3)Cov(X1, X4) + E(X2)E(X4)Cov(X1, X3)

+ Cov(X1, X3)Cov(X2, X4) + Cov(X1, X4)Cov(X2, X3). (F.8)

Proof: We set X̂ ≡ X − E(X). To show (F.7), we note that

Cov(X1X2, X3) =Cov
[
(E(X1) + X̂1)(E(X2) + X̂2), X3

]
=E(X1)Cov(X̂2, X3) + E(X2)Cov(X̂1, X3) + Cov(X̂1X̂2, X3)

=E(X1)Cov(X2, X3) + E(X2)Cov(X1, X3) + Cov(X̂1X̂2, X̂3). (F.9)

Eq. (F.9) implies (F.7) if

Cov(X̂1X̂2, X̂3) = 0. (F.10)
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To show (F.10), we write {X̂i}i=1,2,4 as

X̂i =
Cov(Xi, X3)

V ar(X3)
X̂3 + ϵi, (F.11)

where because of joint normality, ϵi is normal, mean zero and independent of X3. Therefore,

Cov(X̂1X̂2, X̂3) =
Cov(X1, X3)Cov(X2, X3)

V ar(X3)2
Cov(X̂2

3 , X̂3) +
Cov(X1, X3)

V ar(X3)
Cov(X̂3ϵ2, X̂3)

+
Cov(X2, X3)

V ar(X3)
Cov(X̂3ϵ1, X̂3) + Cov(ϵ1ϵ2, X̂3). (F.12)

The first term in (F.12) is zero because

Cov(X̂2
3 , X̂3) = E(X̂3

3 ) = 0,

where the second step follows because X̂3 is normal with mean zero, and hence symmetrically

distributed around zero. The second and third terms in (F.12) are zero because

Cov(X̂3ϵi, X̂3) = E(X̂2
3 ϵi) = E(X̂2

3 )E(ϵi) = 0,

for i = 1, 2, where the second step follows because ϵi is independent of X3, and the third because ϵi

is mean zero. The fourth term in (F.12) is zero because (ϵ1, ϵ2) are independent of X3. Therefore,

(F.10) holds, and so does (F.7).

To show (F.8), we note that

Cov(X1X2, X3X4) =Cov
[
(E(X1) + X̂1)(E(X2) + X̂2), X3X4

]
=E(X1)Cov(X̂2, X3X4) + E(X2)Cov(X̂1, X3X4) + Cov(X̂1X̂2, X3X4).

(F.13)

Using (F.7), we find

E(X1)Cov(X̂2, X3X4) =E(X1)
[
E(X3)Cov(X̂2, X4) + E(X4)Cov(X̂2, X3)

]
=E(X1)E(X3)Cov(X2, X4) + E(X1)E(X4)Cov(X2, X3), (F.14)

and similarly

E(X2)Cov(X̂1, X3X4) = E(X2)E(X3)Cov(X1, X4) + E(X2)E(X4)Cov(X1, X3). (F.15)
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Moreover,

Cov(X̂1X̂2, X3X4) =Cov
[
X̂1X̂2, (E(X3) + X̂3)(E(X4) + X̂4)

]
=E(X3)Cov(X̂1X̂2, X̂4) + E(X4)Cov(X̂1X̂2, X̂3) + Cov(X̂1X̂2, X̂3X̂4)

=Cov(X̂1X̂2, X̂3X̂4), (F.16)

where the second step follows because of (F.10). Using (F.11), we find

Cov(X̂1X̂2, X̂3X̂4) =
Cov(X3, X4)

V ar(X3)
Cov(X̂1X̂2, X̂

2
3 ) + Cov(X̂1X̂2, X̂3ϵ4), (F.17)

Cov(X̂1X̂2, X̂
2
3 ) =

Cov(X1, X3)Cov(X2, X3)

V ar(X3)2
Cov(X̂2

3 , X̂
2
3 ) +

Cov(X1, X3)

V ar(X3)
Cov(X̂3ϵ2, X̂

2
3 )

+
Cov(X2, X3)

V ar(X3)
Cov(X̂3ϵ1, X̂

2
3 ) + Cov(ϵ1ϵ2, X̂

2
3 ), (F.18)

Cov(X̂1X̂2, X̂3ϵ4) =
Cov(X1, X3)Cov(X2, X3)

V ar(X3)2
Cov(X̂2

3 , X̂3ϵ4) +
Cov(X1, X3)

V ar(X3)
Cov(X̂3ϵ2, X̂3ϵ4)

+
Cov(X2, X3)

V ar(X3)
Cov(X̂3ϵ1, X̂3ϵ4) + Cov(ϵ1ϵ2, X̂3ϵ4). (F.19)

Similar arguments as in the first part of the proof imply that the last three terms in (F.18) are

zero, and so are the first and fourth terms in (F.19). To compute the first term in (F.18), we note

that

Cov(X̂2
3 , X̂

2
3 ) = E(X̂4

3 )− E(X̂2
3 ) = 2E(X̂2

3 )
2 = 2V ar(X3)

2,

where the second step follows X̂3 is normal with mean zero. To compute the second and third

terms in (F.19), we note that

Cov(X̂3ϵ2, X̂3ϵ4) =E(X̂2
3 ϵ2ϵ4)− E(X̂3ϵ2)E(X̂3ϵ4)

=E(X̂2
3 )E(ϵ2ϵ4)

=E(X̂2
3 )Cov(ϵ2, ϵ4)

=V ar(X3)Cov(X2, ϵ4)

where the second, third and fourth steps follow because (ϵ2, ϵ4) are independent of X3 and mean

zero. Similarly, for the third term in (F.19),

Cov(X̂3ϵ1, X̂3ϵ4) = V ar(X3)Cov(X1, ϵ4).
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Therefore, (F.17)-(F.19) imply that

Cov(X̂1X̂2, X̂3X̂4)

=
2Cov(X1, X3)Cov(X2, X3)Cov(X3, X4)

V ar(X3)
+ Cov(X1, X3)Cov(X2, ϵ4) + Cov(X1, X3)Cov(X1, ϵ4)

=Cov(X1, X3)Cov

[
X2,

Cov(X3, X4)

V ar(X3)
X3 + ϵ4

]
+ Cov(X2, X3)Cov

[
X1,

Cov(X3, X4)

V ar(X3)
X3 + ϵ4

]
=Cov(X1, X3)Cov(X2, X4) + Cov(X2, X3)Cov(X1, X4). (F.20)

Eqs. (F.13)-(F.16) and (F.20) imply (F.8).

Proof of Lemma 8.1: Eq. (8.5) follows from

Cov(ŵtdRt, ŵt′dRt′) = E [Covt (ŵtdRt, ŵt′dRt′)] + Cov [Et(ŵtdRt), Et(ŵt′dRt′)]

and (C.22). We can write C1 as

C1 =E [ŵtCovt (dRt, ŵt′dRt′)]

E [ŵtCovt (dRt, Et′(ŵt′dRt′))]

=

(
f +

k∆

ηΣη′

)
E
[
ŵtCovt

(
dRt,Λt′wt′Σp

′
f

)]
dt′, (F.21)

where the second step follows because the covariance Covt (dRt, ŵt′dRt′) involves only the drift

terms in ŵt′dRt′ and not the Brownian terms, and the third step follows from (B.3). Since the

strategy wt is linear, the variable wt′Σp
′
f is normal. Applying (F.7) to the normal variables

(dRt,Λt′ , wt′Σp
′
f ), we find

Covt
(
dRt,Λt′wt′Σp

′
f

)
= Et(Λt′)Covt(dRt, wt′Σp

′
f ) + Et(wt′Σp

′
f )Covt(dRt,Λt′). (F.22)

Substituting (F.22) into (F.21), and noting that the conditional covariances in the right-hand side

of (F.22) are constant because the variables (dRt,Λt′ , wt′Σp
′
f ) are normal, we find

C1 =

(
f +

k∆

ηΣη′

)[
E (ŵtEt(Λt′))Covt(dRt, wt′Σp

′
f ) + E

(
ŵtEt(wt′Σp

′
f )
)
Covt (dRt,Λt′)

]
dt′,

which implies (8.6). Using (B.3), we can write C2 as

C2 = Cov
(
ΛtwtΣp

′
f ,Λt′wt′Σp

′
f

)
dtdt′. (F.23)
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Applying (F.8) to the normal variables (Λt, wtΣp
′
f ,Λt′ , wt′Σp

′
f ), and noting that in steady state

E(Λt) = E(Λt′) and E(wtΣp
′
f ) = E(wt′Σp

′
f ), we find (8.7).

Proof of Lemma 8.2: Eq. (8.8) follows from (3.10) and (C.1)-(C.3). Eq. (8.9) follows from (3.10)

and (C.6). To derive (8.10), we note that

E
(
ŵtwt′Σp

′
f

)
Covt(dRt,Λt′)

=
1

f + k∆
ηΣη′

E
(
ŵtwt′Σp

′
f

)
G(γR1 , γ

R
2 , γ

R
3 , t

′ − t, ν0)Σp
′
fdt

=
1

f + k∆
ηΣη′

E
(
ŵtΣp

′
fwt′Σp

′
f

)
ΛR,t′−tdt

=
1

f + k∆
ηΣη′

E
(
wtΣp

′
fwt′Σp

′
f

)
ΛR,t′−tdt, (F.24)

where the first step follows from (3.10) and (C.5), and the third from (B.1). Eq. (F.24) yields (8.10)

because in steady state E(wtΣp
′
f ) = E(wt′Σp

′
f ).

Proof of Proposition 8.1: Eq. (8.11) follows from

E
(
wM̂
t Σiv′

)
= E

(
wM̂
t

)
Σiv′ =

[∫ t

t−τ
E(dR̂′

u)

]
Σiv′ = L2τpfΣ

i+1v′,

where the second step follows from (5.2), and the third from (C.24). To derive (8.12), we note that

Cov
(
wM̂
t Σiv′,Λt′

)
=Cov

(
wM̂
t ,Λt′

)
Σiv′

=

[∫ t

t−τ
Cov(dR̂′

u,Λt′)

]
Σiv′, (F.25)

where the second step follows from (5.2). The term inside the integral in (F.25) can be written as

E
[
Covu(dR̂

′
u,Λt′)

]
+ Cov

[
Eu(dR̂

′
u),Λt′

]
=

1

f + k∆
ηΣη′

[
G(γR1 , γ

R
2 , γ

R
3 , t

′ − u, ν0) +H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , t

′ − u, ν0)
]
pfΣdu, (F.26)

where the first step follows from (C.22), and the second from (3.10), (C.5), (C.6) and (C.12).

Substituting (F.26) into (F.25), and integrating, we find (8.12). To derive (8.13), we use the

counterpart of (F.25),

Cov
(
Λt, w

M̂
t′ Σp

′
f

)
=

[∫ t′

t′−τ
Cov(Λt, dR̂

′
u)

]
Σp′f , (F.27)
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and write the term inside the integral as

E
[
Covu(Λt, dR̂

′
u)
]
+ Cov

[
Λt, Eu(dR̂

′
u)
]

=
1

f + k∆
ηΣη′

[
G(γR1 , γ

R
2 , γ

R
3 , t− u, ν0)1{t>u} +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , |t− u|, ν0)

]
pfΣdu,

(F.28)

where the difference between (F.28) and (F.26) arises because u can exceed t. Substituting (F.28)

into (F.27), and integrating, we find (8.13). To derive (8.14), we note that

Cov
(
wM̂
t Σip′f , w

M̂
t′ Σ

ip′f

)
=pfΣCov

(
wM̂ ′

, wM̂
t′

)
Σp′f

=pfΣ

[∫ t

t−τ

∫ t′

t′−τ
Cov(dR̂u, dR̂

′
u′)

]
Σp′f

=pfΣ

[∫
(u,u′)∈[t−τ,t]×[t′−τ,t′],u̸=u′

Cov(dR̂u, dR̂
′
u′) +

∫
u∈[t′−τ,t]

Cov(dR̂u, dR̂
′
u)

]
Σp′f , (F.29)

where the second step follows from (5.2), and the third from separating non-diagonal from diagonal

terms. The term inside the first integral is

E
[
Covmin{u,u′}(dR̂u, dR̂

′
u′)
]
+ Cov

[
Emin{u,u′}(dR̂

′
u), Emin{u,u′}(dR̂

′
u′)
]

E
[
Covmin{u,u′}(dR̂u, dR̂

′
u′)
]
+ Cov

[
Eu(dR̂

′
u), Eu′(dR̂′

u′)
]

=
[
G(γR1 , γ

R
2 , γ

R
3 , |u′ − u|, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , |u′ − u|, ν0)

]
Σp′fpfΣdudu

′, (F.30)

where the second step follows from (C.22), and the third from (C.5), (C.6) and (C.12). The term

inside the second integral is

E
[
Covu(dR̂u, dR̂

′
u)
]
+ Cov

[
Eu(dR̂

′
u), Eu(dR̂

′
u)
]

=E
[
Covu(dR̂u, dR̂

′
u)
]

=

[
f

(
Σ− Ση′ηΣ

ηΣη′

)
+ kΣp′fpfΣ

]
du, (F.31)

where the second step follows because Covu(dR̂u, dR̂
′
u) is of order du and Cov

[
Eu(dR̂

′
u), Eu(dR̂

′
u)
]

of order (du)2, and the third step follows from (C.13). Substituting (F.30) and (F.31) into (F.29),
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and integrating, we find (8.14). To derive (8.15), we note that

Covt

(
dRt, w

M̂
t′ Σp

′
f

)
=Covt

(
dRt, w

M̂
t′

)
Σp′f

=

[∫ t′

t′−τ
Covt(dRt, dR̂

′
u)

]
Σp′f

=

[∫ t′

t′−τ
Covt

(
dRt, Eu(dR̂

′
u)
)
1{u>t} + Covt(dRt, dR̂

′
t)1{t′−τ<t}

]
Σp′f

=

[∫ t′

t′−τ
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0)Σp

′
fpfΣ1{u>t}du+

[
f

(
Σ− Ση′ηΣ

ηΣη′

)
+ kΣp′fpfΣ

]
1{t′−t<τ}

]
Σp′fdt

=

[
G(γR1 , γ

R
2 , γ

R
3 , T , ν4)Σp′fpfΣ+

[
f

(
Σ− Ση′ηΣ

ηΣη′

)
+ kΣp′fpfΣ

]
1{t′−t<τ}

]
Σp′fdt

=

[
wMR1,T Σp

′
f + wMR2,T

(
Σ2p′f −

ηΣ2p′f
ηΣη′

Ση′

)]
dt, (F.32)

where the second step follows from (5.2), the third from separating non-diagonal from diagonal

terms and noting that Covt(dRt, dR̂
′
u) for u > t involves only the drift terms in dR̂u and not the

Brownian terms, and the fourth from (C.5) and (C.13). Using (F.32), we find

E(ŵM̂
t Λt′)Covt(dRt, w

M̂
t′ Σp

′
f )

=E(ŵM̂
t Σp′fΛt′)wMR1,T dt+ E

[
ŵt

(
Σ2p′f −

ηΣ2p′f
ηΣη′

Ση′

)
Λt′

]
wMR2,T dt

=E(wM̂
t Σp′fΛt′)wMR1,T dt+ E

[(
wM̂
t Σ2p′f − wM̂

t Ση′

ηΣη′
ηΣ2p′f

)
Λt′

]
wMR2,T dt, (F.33)

where the second step follows from (B.1). Eq. (F.33) yields (8.15) because in steady state E(Λt) =

E(Λt′).

Proof of Proposition 8.2: Eq. (8.16) follows from

E
(
wV̂
t Σ

iv′
)
= E

(
wV̂
t

)
Σiv′ = E(Γ′

2t)Σ
iv′ =

L2

r
pfΣ

i+1v′,
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where the second step follows from (6.8) and E(Ft) = F̄ (implied by (C.4)), and the third from

(D.2). Eq. (8.17) follows from

Cov
(
wV̂
t Σ

iv′,Λt′

)
= Cov

(
wV̂
t ,Λt′

)
Σiv′ =

[
Cov

(
Γ′
2t,Λt′

)
− 1− ϵ

r + κ
Cov

(
F ′
t ,Λt′

)]
Σiv′,

(where the second step follows from (6.8)), (3.10), (C.6), (C.8) and (D.4). Eq. (8.18) follows

similarly from

Cov
(
Λt, w

V̂
t′ Σp

′
f

)
=

[
Cov

(
Λt,Γ

′
2t′
)
− 1− ϵ

r + κ
Cov

(
Λt, F

′
t′
)]

Σp′f ,

(3.10), (C.6), (C.7) and (D.4). Eq. (8.19) follows from

Cov
(
wV̂
t Σ

ip′f , w
V̂
t′ Σ

ip′f

)
=pfΣCov

(
wV̂ ′
t , wV̂

t′

)
Σip′f

=pfΣCov

[
Cov(Γ2t,Γ

′
2t′)−

1− ϵ

r + κ
Cov(Γ2t, F

′
t′)−

1− ϵ

r + κ
Cov(Ft,Γ

′
2t′) +

(1− ϵ)2

(r + κ)2
Cov(Ft, F

′
t′)

]
Σp′f ,

(where the second step follows from (6.8)), (C.6), (C.7), (C.8), (C.11), and (D.4). To derive (8.20),

we note that

Covt

(
dRt, w

V̂
t′ Σp

′
f

)
=Covt

(
dRt, w

V̂
t′

)
Σp′f

=

[
Covt(dRt,Γ

′
2t′)−

1− ϵ

r + κ
Covt(dRt, F

′
t′)

]
Σp′f

=

[
G(γ1, γ2, γ3, t

′ − t, ν0)Σp
′
fpfΣ− (1− ϵ)ϕ2

(r + κ)2
(Σ + β2γ1Σp

′
fpfΣ)ν0(κ, t

′ − t)

]
Σp′fdt

=

[
wV R1,t′−tΣp

′
f + wV R2,t′−t

(
Σ2p′f −

ηΣ2p′f
ηΣη′

Ση′

)]
dt, (F.34)

where the second step follows from (6.8), and the third from (C.5) and (C.10). Eq. (F.34) yields

(8.20) through the same steps used to derive (8.15) from (F.32).
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G Calibration

Lemmas G.1-G.3 compute the quantities that we use in the calibration. These lemmas assume

general (η,Σ), unless stated otherwise. Lemma G.4 specializes the results to η = 1 and Σ =

σ̂2(I + ω1′1).

Lemma G.1 The Sharpe ratio of the market index η, expressed in annualized terms, is

SRη ≡ E(ηdRt)√
V ar(ηdRt)dt

=
rαᾱ

√
f

α+ ᾱ

ηΣθ′√
ηΣη′

. (G.1)

The correlation between stock n and the index is

Corr(dRnt, ηdRt) =

√
f(Ση′)n√

ηΣη′
[
fΣnn + k[(Σp′f )n]

2
] . (G.2)

The fraction of stock n’s variance that is generated by fund flows is

k[(Σp′f )n]
2

fΣnn + k[(Σp′f )n]
2
. (G.3)

Proof: Eq. (C.37) implies that

E(ηdRt) = L1ηΣη
′dt. (G.4)

Moreover,

V ar(ηdRt) = E [V art(ηdRt)] = fηΣη′dt, (G.5)

where the first step follows by replacing ŵt by η in the first two steps in (B.4), and the second step

follows from (3.8). Substituting (G.4) and (G.5) into the definition of SRη, we find (G.1). The

correlation between stock n and the index is

Corr(dRnt, ηdRt) =
Cov(dRnt, ηdRt)√
V ar(dRnt)V ar(ηdRt)

=
(fΣη′)n√

fηΣη′(fΣ+ kΣp′fpfΣ)nn
, (G.6)

where the second step follows as in (G.5). Eq. (G.6) implies (G.2). Eq. (G.3) follows by separating

fundamental and non-fundamental covariance terms in (3.8).
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Kacperczyk, Sialm, and Zheng (KSZ1 2005) compute the sum across industry sectors of squared

deviations between the weight that an active fund gives to a sector and the sector’s weight in a

broad market index. We compute the same measure, but for simplicity construct weights using

the number of shares times the covariance between one share and the index rather than times the

dollar value of one share (see Footnote 3). When Σ = σ̂2(I + ω1′1), the covariance is the same for

all stocks. When, in addition, η = 1, the index fund gives weight 1/N to stock n, and the active

fund gives

θn − xt∑N
n=1(θn − xt)

=
θn − xt
N(θ̄ − xt)

,

since its portfolio in equilibrium is θ − xtη. The average deviation between weights is

√√√√∑N
n=1

[
θn−xt

N(θ̄−xt)
− 1

N

]2
N

=
σ(θ)

N(θ̄ − xt)
=
σ(θ)

Nθ̄

θ̄

θ̄ − xt
(G.7)

The ratio θ̄/(θ̄ − xt) is the total number of shares held by the active and index funds, over the

number of shares held by the active fund only. We set this to 11/10, since the holdings of active

funds are about ten times those of index funds in KSZ1’s sample period. Setting the left-hand side

of (G.7) to 6.6%, N to 10, and θ̄ to one, we find σ(θ) = 0.6.

Kacperczyk, Sialm, and Zheng (KSZ 2008) compute the difference in CAPM alphas between

top and bottom return-gap deciles by evaluating the return gap over the year before time t and

computing monthly CAPM alphas over the fourth month after time t. To replicate their calculation,

we determine the distribution of the active fund’s expected index-adjusted return (CAPM alpha)

over an interval [t+ τ1, t+ τ2] and conditional on Ct, which is minus the return gap at time t. We

then compute the expectation over the top and bottom deciles of that distribution, and take the

difference.

Lemma G.2 The difference in the active fund’s expected index-adjusted return over the interval

[t+ τ1, t+ τ2] between top and bottom return-gap deciles as of time t is

−H
(
0, 1, 0, γR1

∆

ηΣη′
, γR2

∆

ηΣη′
− 1, γR3

∆

ηΣη′
, T , ν6

) √
2κ

s
[E(z|z > z9)− E(z|z < z1)] , (G.8)

where T ≡ (τ1, τ2), z is a standardized normal variable, and zi, i = 1, .., 9, is the boundary between

the deciles i and i+ 1 of z.
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Proof: The active fund’s index-adjusted return is the discrepancy between the return of the fund

and of its index benchmark. Since the fund’s return in equilibrium is (θ − xtη)dRt − Ctdt, its

index-adjusted return is

(θ − xtη)dRt − Ctdt−
Covt[(θ − xtη)dRt − Ctdt, ηdRt]

V art(ηdRt)
ηdRt

=(θ − xtη)dRt − Ctdt−
Covt[(θ − xtη)dRt, ηdRt]

V art(ηdRt)
ηdRt

=(θ − xtη)dRt − Ctdt−
(
θΣη′

ηΣη′
− xt

)
ηdRt (G.9)

=pfdRt − Ctdt, (G.10)

where the second step follows from (3.8). The fund’s index-adjusted return over the interval [t +

τ1, t+ τ2] is∫ t+τ2

t+τ1

(pfdRu − Cudu).

Because of normality, the expectation of this return conditional on Ct is ZCt, where

Z ≡
Cov

[
Ct,
∫ t+τ2
t+τ1

(pfdRu − Cudu)
]

V ar(Ct)
=

∫ t+τ2
t+τ1

Cov [Ct, pfdRu − Cudu]

V ar(Ct)
. (G.11)

Since the return gap is minus Ct, the difference in expected index-adjusted return between top and

bottom return-gap deciles is

−Z
√
V ar(Ct) [E(z|z > z9)− E(z|z < z1)] . (G.12)

The covariance inside the integral in (G.11) is

Cov [Ct, pfdRu − Cudu]

=Cov [Ct, pfEu(dRu)− Cudu]

=Cov

[
Ct, (γ

R
1 Ĉu + γR2 Cu + γR3 yu)

∆

ηΣη′
− Cu

]
du

=H

(
0, 1, 0, γR1

∆

ηΣη′
, γR2

∆

ηΣη′
− 1, γR3

∆

ηΣη′
, u− t, ν0

)
du, (G.13)

where the second step follows from (C.19) and the third from (C.6). Substituting (G.13) into

(G.11), integrating, substituting into (G.12), and noting that (C.6) implies that V ar(Ct) = s2/2κ,

we find (G.8).
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The difference in expected returns in Lemma G.2 is per share of the active fund, and one share

coincides with the entire fund (Eq. (2.4)). To compare with KSZ, we need to express this difference

per dollar, dividing by the active fund’s dollar value. We assume that this dollar value is 10/11 of

the total dollar value of the active and index funds, which is the value of the true market portfolio

θ. To infer the latter, we divide the per-share annualized standard deviation of θ by the per-dollar

one. The per-share standard deviation is

√
V ar(θdRt)

dt
=
√
θ(fΣ+ kΣp′fpfΣ)θ

′ =

√
f
(ηΣθ′)2

ηΣη′
+

(
f +

k∆

ηΣη′

)
∆

ηΣη′
,

where the first step follows as in (G.5). We assume that the per-dollar one is 15%, as for the

index. To complete the comparison with KSZ, we set (τ1, τ2) = (3/12, 4/12), and note that the

term [E(z|z > z9)− E(z|z < z1)] is approximately 3.4.

The investor’s holdings of stock n at time t, through the index and active funds, are (xtη+ytzt)n.

Lemma G.14 computes the standard deviation of the change in holdings between t and t+ τ . The

change in holdings is the investor’s signed volume. It can also be interpreted as the stock’s flow-

generated volume as a percent of assets managed by the active and index funds. This is because it

is expressed in terms of number of shares, and the combined holdings of the active and index funds

in the average stock are θ̄ = 1 share.

Lemma G.3 The standard deviation of the change in the investor’s holdings of stock n between t

and t+ τ is√
2 [H(0, 0, 1, 0, 0, 1, 0, ν0)−H(0, 0, 1, 0, 0, 1, τ, ν0)] |(pf )n| . (G.14)

Proof: Eq. (A.1) implies that the standard deviation of the change in the investor’s holdings of

stock n between t and t+ τ is√
V ar [(xt+τη + yt+τzt+τ )n − (xtη + ytzt)n] =

√
V ar(yt+τ − yt) |(pf )n| . (G.15)

Moreover,

V ar(yt+τ − yt) =V ar(yt+τ ) + V ar(yt)− 2Cov(yt, yt+τ )

=2V ar(yt)− 2Cov(yt, yt+τ ), (G.16)

where the second step follows from stationarity. Combining (G.15) with (G.16), and using (C.6),

we find (G.14).
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Lemma G.4 If η = 1 and Σ = σ̂2(I + ω1′1), then for all i ∈ N,

ηΣiη′ = σ̂2i(1 + ωN)iN, (G.17)

ηΣip′f = 0, (G.18)

pfΣ
ip′f = σ̂2iσ(θ)2N, (G.19)

Tr(Σi) = σ̂2i
[
(1 + ωN)i +N − 1

]
, (G.20)

Σip′f = σ̂2i(θ − θ̄1)′. (G.21)

Proof: Using the binomial formula and η = 1, we find

Σi = σ̂2i

(
i∑

i′=0

Ci
i′ω

i′(1′1)i
′

)
= σ̂2i

(
I +

i∑
i′=1

Ci
i′ω

i′N i′−11′1

)
. (G.22)

Eq. (G.22) implies that

Σiη′ = σ̂2i

(
1 +

i∑
i′=1

Ci
i′ω

i′N i′

)
1′ = σ̂2i(1 + ωN)i1′, (G.23)

Σiθ′ = σ̂2i

[
θ +

(
i∑

i′=1

Ci
i′ω

i′N i′

)
θ̄1

]′
= σ̂2i

[
θ − θ̄1+ (1 + ωN)iθ̄1

]′
. (G.24)

Eqs. (G.23) and (G.24) imply that

ηΣθ′ = θ̄ηΣη′,

and hence

pf = θ − θ̄1. (G.25)

Eq. (G.17) follows from (G.23). Eq. (G.21) follows from (G.23)-(G.25). Eq. (G.18) follows from

(G.21). Eq. (G.19) follows from (G.21) and (G.25). Eq. (G.20) follows from (G.22).

Lemma G.4 implies that the only characteristics of θ that affect Sharpe ratios are θ̄, which can

be normalized to one, and σ(θ). The results in Lemmas (G.1) and (G.3) depend on the absolute

values of the components of the vector pf = θ − θ̄1 = θ − 1, i.e., the deviations between θ and 1.

To compute the quantities in these lemmas, we set the deviations to their average value, which is

σ(θ).
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