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1 Introduction

Most of the empirical literature assessing the predictability of the levels of financial returns

has focused on the predictor variables. But despite hundreds of papers over three decades, the

evidence remains controversial (see Spiegel (2008) and the references therein). There is much

stronger evidence on time variation in volatilities at daily frequencies, but at the same time

there is a widespread belief that those effects are irrelevant at monthly frequencies. Finally,

many empirical studies indicate that the distribution of asset returns is rather leptokurtic, and

possibly somewhat asymmetric. Nevertheless, most existing tests for predictability of the mean

and volatility of asset returns ignore this fact by implicitly relying on normality. Similarly,

theoretical and empirical considerations suggest that the movements in the first two moments

of excess returns on financial assets, assuming that those movements are real, should be smooth

and persistent.

In this context, we propose new testing approaches for mean-variance predictability that

explicitly account for those empirical regularities. Specifically, we propose tests for smooth but

persistent serial correlation in asset risk premia and volatilities that exploit the non-normality

of returns. In this sense, we consider both parametric tests that assume flexible non-normal

distributions, and non-parametric tests. For a given predictor variable, our tests differ from

standard tests in that we effectively change the regressand. But we also transform the predictor

variable to exploit the persistence of conditional means and variances. Although we focus our

discussion on Lagrange Multiplier (or score) tests, our results apply to Likelihood ratio and Wald

tests, which are asymptotically equivalent under the null and sequences of local alternatives, and

therefore share their optimality properties.

Importantly, we show that our parametric tests remain valid regardless of whether or not the

assumed distribution is correct, which puts them on par with the Gaussian pseudo-maximum

likelihood (PML) testing procedures advocated by Bollerslev and Wooldridge (1992) among

many others. We also show that our non-parametric tests should be as efficient as if we knew

the true distribution of the data.

We present local power analyses that confirm the gains that our new testing approaches

deliver over existing methods. We complement our theoretical results with detailed Monte

Carlo exercises that study their finite sample reliability. Finally, we also illustrate our methods

with an application to the three Fama and French (1993) factors for US stocks.

The rest of the paper is organised as follows. We introduce our mean and variance predictabil-

ity tests in sections 2 and 3, respectively, and study the power gains that they offer against local

alternatives. A Monte Carlo evaluation of our proposed procedures can be found in section 4,
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followed by our empirical application in section 5. Finally, we present our conclusions in section

6. Proofs and auxiliary results are gathered in appendices.

2 Tests for predictability in mean

2.1 First order serial correlation tests

Although we can consider any predictor variable available at time t − 1, for pedagogical
reasons we initially develop tests of first order serial correlation under the maintained assumption

that the conditional variance is constant. More specifically, the model under the alternative is

yt = π(1− ρ) + ρyt−1 +
√
ωε∗t ,

ε∗t |It−1;π, ρ, ω,η ∼ i.i.d. D(0, 1,η)
with density function f(.;η)

⎫⎬⎭ , (1)

where the parameters of interest are φ = (θ0,η0)0, θ0 = (θ0s, ρ)0 and θs = (π, ω)0. In this context,

the null hypothesis is H0 : ρ = 0. Regardless of the specific parametric distribution, testing the

null of white noise against first order serial correlation is extremely easy:

Proposition 1 Let

Ḡm(l) =
1

T

XT

t=1

∂ ln f [�t(θs0);η0]

∂ε∗
�t−l(θs0)

denote the sample cross moment of �t−l(θs) and the derivative of the conditional log density of

ε∗t with respect to its argument evaluated at �t(θs), where �t(θs) = ω−1/2(yt − π).

1. Under the null hypothesis H0 : ρ = 0, the score test statistic

LMAR(1) = T · Ḡ2m(1)

Iρρ(θs0, 0,η0)
(2)

will be distributed as a χ2 with 1 degree of freedom as T goes to infinity, where

Iρρ(θs, 0,η) = V [�t(θs)|θs, 0,η] ·Mll(η)

and

Mll(η) = V

∙
∂ ln f(ε∗t ;η)

∂ε∗

¯̄̄̄
It−1;η

¸
. (3)

2. This asymptotic distribution is unaffected if we replace the true values of the parameters

θs0 or η0 by their maximum likelihood estimators under the null.

Obviously, the exact expression for Ḡm(1) depends on the assumed distribution. For instance,

in the standardised Student t case with η−1 degrees of freedom,

∂ ln f(ε∗; η)
∂ε∗

= − η + 1

1− 2η + ηε∗2
ε∗,
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which reduces to ε∗ under normality. In contrast, for a standardised Laplace distribution, which

does not depend on any additional parameters, we have that

∂ ln f(ε∗)
∂ε∗

= −
√
2sign(ε∗),

which means that (2) effectively becomes a directional prediction test in that case.

Similarly, in the case of a standardised two component mixture of normals with density

function:

f(ε∗;η) =
λ

σ∗1(η)
φ

∙
ε∗ − µ∗1(η)
σ∗1(η)

¸
+
1− λ

σ∗2(η)
φ

∙
ε∗ − µ∗2(η)
σ∗2(η)

¸
,

where φ(.) is the standard normal density, η = (δ,κ, λ)0 are shape parameters, and µ∗1(η), µ∗2(η),

σ∗21 (η) and σ∗22 (η) are defined in Appendix C.1, the relevant regressand becomes

∂ ln f(ε∗;η)
∂ε∗

=
1

σ∗1(η)

∙
ε∗ − µ∗1(η)
σ∗1(η)

¸
w(ε∗;η) +

1

σ∗2(η)

∙
ε∗ − µ∗2(η)
σ∗2(η)

¸
[1−w(ε∗;η)],

with

w(ε∗;η) =
λ

σ∗1(η)
φ
h
ε∗−µ∗1(η)
σ∗1(η)

i
λ

σ∗1(η)
φ
h
ε∗−µ∗1(η)
σ∗1(η)

i
+ 1−λ

σ∗2(η)
φ
h
ε∗−µ∗2(η)
σ∗2(η)

i .
As for Mll, we can either use its theoretical expression (for instance (1 + η) (1− 2η)−1

× (1 + 3η)−1 in the case of the Student t, or 1 under normality), compute the sample analogue
of (3), or exploit the information matrix equality and calculate it as the sample average of

−∂2 ln f [�t(θs),η] /∂ε∗∂ε∗. As shown by Davidson and MacKinnon (1983) and many others,
this choice will affect the finite sample properties of the tests.

Intuitively, we can interpret the above score test a moment test based on the following

orthogonality condition:

E

½
∂ ln f [�t(θs0);η0]

∂ε∗
�t−1(θs0)

¯̄̄̄
θs0, 0,η0

¾
= 0, (4)

which is related to the moment condition used by Bontemps and Meddahi (2007) in their dis-

tributional tests.1 In fact, given that the score with respect to π under the null is proportional

to
1

T

XT

t=1

∂ ln f [�t(θs);η]

∂ε∗
,

the sample second moment will numerically coincide with the sample covariance if we evaluate

the standardised residuals at the ML estimators. Hence, an asymptotically equivalent test

under the null and sequences of local alternatives would be obtained as T ·R2 in the regression
of ∂ ln f [�t(θs),η]/∂ε∗ on a constant and �t−1(θs).

1See Arellano (1991), Newey (1985), Newey and McFadden (1994) and Tauchen (1985) for a thorough discussion
of moment tests.
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Our regressand can be regarded as �t(θs) times a damping factor that accounts for skewness

and kurtosis, as in the robust estimation literature. Figures 1c illustrates the regressand as a

function of �t(θs) for four common distributions: normal, Laplace (whose kurtosis is 6), Student t

with 6 degrees of freedom (and therefore the same kurtosis as the Laplace), and a two component

mixture of normals with skewness coefficient -.5 and kurtosis coefficient 6. As a reference, we

also plot the corresponding standardised densities in Figure 1a, and (minus) log-densities in

Figure 1b, which can be understood as estimation loss functions.

These damping factors are closely related to the robust estimation literature (see e.g. Maronna

et al (2006)). In fact, the Student t and Laplace distributions are common choices for robust in-

fluence functions.2 In this sense, the Student t factor (η+1)/[1−2η+ηε∗2t ] clearly downweights

big observations because it is a decreasing function of ε∗2t for fixed η > 0, the more so the higher

η is. As a result, the ML estimators of π and ω can be regarded as M-estimators, which are

typically less sensitive to outliers than the sample mean and variance. A notable exception is a

discrete mixture of normals, since we prove in Appendix D.5 that the ML estimators of π and

ω coincide with the Gaussian ones.

Despite the theoretical advantages and numerical robustness of our proposed tests, in practice

most researchers will test for first order serial correlation in yt by checking whether its first

order sample autocorrelation lies in the 95% confidence interval (−1.96/√T , 1.96/√T ). Such
a test, though, is nothing other than the test in (1) under the assumption that the conditional

distribution of the standardised innovations is i.i.d. N(0, 1). Apart from tradition, the main

justification for using a Gaussian test is the following (see e.g. Breusch and Pagan (1980) or

Godfrey (1988)):

Proposition 2 If in model (1) we assume that the conditional distribution of ε∗t is i.i.d. N(0, 1),
when in fact it is i.i.d. D(0, 1,%0), then T · Ḡ2m(1) will continue to be distributed as a χ2 with 1
degree of freedom as T goes to infinity under the null hypothesis of H0 : ρ = 0.

But it is important to emphasise that the orthogonality condition (4) underlying our proposed

Ar test also remains valid under the null regardless of whether or not the assumed parametric

distribution is correct. More precisely, if we fixed π, ω and η to some arbitrary values, T ·R2 in the
regression of ∂ ln f [�t(θs),η]/∂ε∗ on a constant and �t−1(θs) would continue to be asymptotically

distributed as a χ21 under the null. In practice, though, researchers would typically replace θs

and η by their ML estimators obtained on the basis of the assumed distribution, θ̂s and η̂,

say, and then apply our tests. In principle, one would have to take into account the sampling

2Other well-known choices not directly related to parametric densities are Tukey’s biweight function, which
behaves like a quadratic loss function for small values of �t(θs) but then tapers off, and the so-called windorising
approach, whose loss function is also initially quadratic in �t(θs) but eventually becomes linear.

4



uncertainty in those pseudo-MLE estimators of θ∞ and η∞. However, it is not really necessary

to robustify our proposed Ar test to distributional misspecification:

Proposition 3 If in model (1) we assume that the conditional distribution of ε∗t is i.i.d. with
density function f(.;η), when in fact it is i.i.d. D(0, 1,%0), then T · R2 in the regression of
∂ ln f [�t(θ̂s), η̂]/∂ε

∗ on a constant and �t−1(θ̂s) will continue to be distributed as a χ2 with 1
degree of freedom as T goes to infinity under the null hypothesis H0 : ρ = 0.

In this sense, Proposition 2 can be regarded as a corollary to Proposition 3.

Importantly, a test based on (4) will have non-trivial power even when it will no longer be

an LM test. In fact, the evidence presented in Amengual and Sentana (2010) suggests that our

proposed tests could be more powerful than the usual regression-based tests in Proposition 2

even though the parametric distribution is misspecified.

In any case, though, the test proposed in Proposition 1 requires to specify a parametric

distribution. Given that some researchers might be reluctant to do so, we next consider semi-

parametric tests that do not make any specific assumptions about the conditional distribution

of the standardised innovations ε∗t , as in Gonzalez-Rivera and Ullah (2001). There are two

possibilities: unrestricted nonparametric density estimates (SP) and nonparametric density es-

timates that impose symmetry (SSP). It turns out that the asymptotic null distribution of our

proposed serial correlation test remains valid if we replace ∂ ln f [�t(θs),η]/∂ε∗ by one of those

non-parametric estimators:

Proposition 4 1. The asymptotic distribution of the test in Proposition 3 under the null
hypothesis H0 : ρ = 0 is unaffected if we replace ∂ ln f [�t(θs),η0]/∂ε

∗ by a non-parametric
estimator, and π0 and ω0 by their efficient semiparametric estimators under the null,

π̄ =
1

T

XT

t=1
yt (5)

and
ω̄ =

1

T

XT

t=1
(yt − π̄)2, (6)

which coincide with the sample mean and variance of yt.

2. The same result is true if we replace ∂ ln f [�t(θs),η0]/∂ε
∗ by a non-parametric estima-

tor that imposes symmetry, and π0 and ω0 by their efficient symmetric semiparametric
estimators under the null,

π̇ = π̄ +
1√
ω

(XT

t=1

∙
∂ ln f [�t(θs),η0]

∂ε∗

¸2)−1 ∙XT

t=1

∂ ln f [�t(θs),η0]

∂ε∗

¸
(7)

and
ω̇ =

1

T

XT

t=1
(yt − π̇)2. (8)
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In addition, the semiparametric predictability test is adaptive, in the sense that it is as

powerful as if we knew the distribution of ε∗t , including the true values of the shape parameters

η. Similarly, the symmetric semiparametric test will be adaptive too if the true distribution is

symmetric. In finite samples, though, the power of these semiparametric procedures may not

be well approximated by the first-order asymptotic theory that justifies their adaptivity.

2.2 Exploiting the persistence of expected returns

Let us now consider a situation in which

yt = π(1−
Xh

l=1
ρl) +

Xh

l=1
ρlyt−l +

√
ωε∗t ,

with h > 1 but finite, so that the null hypothesis of lack of predictability becomesH0 : ρ1 = . . . =

ρh = 0. In view of our previous discussion, it is not difficult to see that under this maintained

assumption the score test of ρl = 0 will be based on the orthogonality condition

E

½
∂ ln f [�t(θs),η0]

∂ε∗
�t−l(θs)|θs0, 0,η0

¾
= 0.

Given that under the null hypothesis yt is independent and identically distributed, it is

straightforward to show that the joint test for Ar(h) dynamics will be given by the sum of h

terms of the form

T · Ḡ2m(l)

Iρρ(θs0, 0,η0)
for l = 1, . . . , h, whose asymptotic distribution would be a χ2h under the null.

Such a test, though, does not impose any prior knowledge on the nature of the expected

return process, other than its lag length is h. Nevertheless, there are theoretical and empirical

reasons which suggest that time-varying expected returns should be smooth processes.

A rather interesting example of persistent expected returns is an autoregressive model in

which ρl = ρ for all l. In this case, we can use the results in Fiorentini and Sentana (1998) to

show that the process for expected returns will be given by the following not strictly invertible

Arma(h, h− 1) process:

µt+1 = π(1− hρ) +
Xh

j=1
ρµt+1−j + ρ

∙
εt +

Xh−1
j=1

εt−j
¸
. (9)

As long as the covariance stationarity condition hρ < 1 is satisfied, the autocorrelations of

the expected return process can be easily obtained from its autocovariance generating function

ψµµ(z) =

³
1 +

Ph−1
j=1 z

j
´³
1 +

Ph−1
j=1 z

−j
´

³
1− ρ

Ph
j=1 z

j
´³
1− ρ

Ph
j=1 z

−j
´ ,
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which contrasts with the autocovariance generating function of the observed process

ψyy(z) =
1³

1− ρ
Ph

j=1 z
j
´³
1− ρ

Ph
j=1 z

−j
´ .

In this context, we can easily find examples in which the autocorrelations of the observed

return process are very small while the autocorrelations of the expected return process are much

higher, and decline slowly towards 0. For example, Figure 2 presents the correlograms of yt and

µt+1 on the same vertical scale for h = 24 and ρ = .015.

This differential behaviour suggests that a test against first order correlation will have little

power to detect such departures from white noise, the optimal test being one against an Ar(h)

process with common coefficients. We shall formally analyse this issue in the next section.

From the econometric point of view, the assumption that ρl = ρ for all l does not pose any

additional problems. Specifically, it is easy to prove that the relevant orthogonality condition

will become

E

½
∂ ln f [�t(θs),η0]

∂ε∗
Xh

l=1
�t−l(θs)

¯̄̄̄
θs0, 0,η0

¾
= 0, (10)

with hIρρ(θs, 0,η) being the corresponding asymptotic variance.
This moment condition is analogous to the one proposed by Jegadeesh (1989) to test for

long run predictability of individual asset returns without introducing overlapping regressands.

Cochrane (1991) and Hodrick (1992) discussed related suggestions. The intuition is that if

returns contain a persistent but mean reverting predictable component, using a persistent right

hand side variable such as an overlapping h-period return may help to pick it up. The asymptotic

variance is analogous to the so-called Hodrick (1992) standard errors used in LM tests for long

run return predictability in univariate OLS regressions with overlapping regressands.

It is important to mention that the regressor
Ph

l=1 �t−l(θs) will be quite persistent even

if returns are serially uncorrelated because of the data overlap. Specifically, the first-order

autocorrelation coefficient will be 1− 1/h in the absence of return predictability. Nevertheless,
since the correlation between the innovation to the regressor at time t+ 1 and the innovations

�t(θs) is 1/
√
h under the null, the size problems that plague predictive regressions should not

affect much our test (see Campbell and Yogo (2006)).

2.3 The relative power of mean predictability tests

Let us begin by assessing the power gains obtained by exploiting the persistence of expected

returns. For simplicity we consider Gaussian tests only, and evaluate asymptotic power against

compatible sequences of local alternatives of the form ρ0T = ρ̄/
√
T . As we show in Appendix

B, when the true model is (9), the non-centrality parameter of the Gaussian pseudo-score test
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based on the first order serial correlation coefficient is ρ̄2 regardless of h, while the non-centrality

parameter of the test that exploits the persistence of the conditional mean will be hρ̄2. Hence, the

asymptotic relative efficiency of the two tests is precisely h. Figure 3a shows that those differences

in non-centrality parameters result in substantive power gains. However, the asymptotic relative

efficiency would be exactly reversed in the unlikely event that the true model were an Ar(1)

but we tested for it by using the moment condition (10) (see Appendix B). Not surprisingly,

this would result in substantial power losses, which are also illustrated in Figure 3a.

Let us now turn to study the improvements obtained by considering distributions other than

the normal. The following result gives us the necessary ingredients.

Lemma 1 If the true DGP corresponds to (1) with ρ0 = 0, then the feasible ML estimator of ρ
is as efficient as the infeasible ML estimator, which require knowledge of η0. If in addition the
conditional distribution is symmetric and κ0 <∞, then the elliptically symmetric semiparametric
estimator of ρ is also fully efficient. The same is true in general of the semiparametric estimator
of ρ. In contrast, the inefficiency ratio of the Gaussian PML estimator of ρ isM−1

ll (η0), where
Mll(η0) is defined in (3).

This means that the asymptotic relative efficiency of those serial correlation tests that exploit

the non-normality of yt will beM−1
ll (η0). Figure 3b assesses the power gains against local Ar(1)

alternatives under the assumption that the true conditional distribution of ε∗t is a Student t

with either 6 or 4.5 degrees of freedom. This figure confirms that the power gains that accrue

to our proposed serial correlation tests by exploiting the leptokurtosis of the t distribution are

noticeable, the more so the higher the kurtosis of yt. Similarly, Figure 3c repeats the same

exercise for two normal mixtures whose kurtosis coefficients are both 6, and whose skewness

coefficients are -.5 and -1.219, respectively. Once again, we can see that there are significant

power gains. In this sense, it is worth remembering that since our semiparametric tests are

adaptive, they should achieve these gains, at least asymptotically.

3 Tests for predictability in variance

3.1 First-order ARCH tests

Although we can consider any variance predictor variable available at time t−1, for pedagogi-
cal reasons we initially develop tests of first order Arch effects under the maintained assumption

that the conditional mean is constant. More specifically, the model under the alternative is

yt = π0 + σt(θ0)ε
∗
t ,

σ2t (θ) = ω(1− α) + α(yt−1 − π)2,
ε∗t |It−1;π, ρ, ω,η ∼ i.i.d. D(0, 1,η),
with density function f(.,η)

⎫⎪⎪⎬⎪⎪⎭ , (11)
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where the parameters of interest are φ = (θ0,η0)0, θ0 = (θ0s, α)0 and θs = (π, ω)0. In this context,

the null hypothesis is H0 : α = 0. Regardless of the specific parametric distribution, testing the

null of conditional homoskedasticity against first order Arch is extremely easy:

Proposition 5 Let

Ḡs(j) =
1

T

XT

t=1

½
1 +

∂ ln f [�t(θs),η0]

∂ε∗
�t(θs)

¾
�2t−j(θs)

denote the sample cross moment of �2t−j(θs) and 1 plus the derivative of the conditional log
density of ε∗t with respect to its argument evaluated at �t(θs) times �t(θs).

1. Under the null hypothesis H0 : α = 0, the score test statistic

LMARCH(1) = T · Ḡ2s(1)

Iαα(θs0, 0,η0)
(12)

will be distributed as a χ2 with 1 degree of freedom as T goes to infinity, where

Iαα(θs0, 0,η0) = V [12�
2
t (θs)|θs, 0,η0] ·Mss(η0)

and

Mss(η) = V

∙
∂ ln f(ε∗t ,η)

∂ε∗
ε∗t

¯̄̄̄
It−1;η

¸
. (13)

2. This asymptotic null distribution is unaffected if we replace π0, ω0 or η0 by their maximum
likelihood estimators.

As in the case of the mean predictability tests discussed in the previous section, the exact

expression for Ḡs(1) depends on the assumed distribution. As for Mss(η), we can either use

its theoretical expression (for instance 2(1 + 3η)−1 in the case of the Student t, which reduces

to 2 under normality), compute the sample analogue of (13), or exploit the information matrix

equality and calculate it as twice the sample average of 1 − ∂2 ln f [�t(θs),η] /∂ε
∗∂ε∗ · �2t (θs).

Once again, this choice will affect the finite sample properties of the tests (see Davidson and

MacKinnon (1983)).

Intuitively, we can interpret the above score test a moment test based on the following

orthogonality condition:

E

∙½
1 +

∂ ln f [�t(θs),η0]

∂ε∗
�t(θs)

¾
�2t−1(θs)

¯̄̄̄
θs0, 0,η0

¸
= 0, (14)

which is also related to the moment conditions used by Bontemps and Meddahi (2007) in their

distributional tests. In fact, given that the score with respect to ω under the null is proportional

to
1

T

XT

t=1

½
1 +

∂ ln f [�t(θs),η]

∂ε∗
�t(θs)

¾
,

the sample second moment will numerically coincide with the sample covariance if we evaluate

the standardised residuals at the ML estimators. As a result, an asymptotically equivalent test

9



under the null and sequences of local alternatives would be obtained as T ·R2 in the regression
of 1 + �t(θs)∂ ln f [�t(θs),η]/∂ε

∗ on a constant and �2t−1(θs).

In this light, Godfrey (1988) re-interprets Glejser (1969) heteroskedasticity test, which re-

gresses the absolute value of the residuals on several predictor variables, as an ML test based

on the Laplace distribution. More generally, our regressand can be regarded as �2t (θs) times a

damping factor that accounts for skewness and kurtosis. Figure 4 illustrates the transformation

of the regressands for the same four distributions depicted in Figure 1: normal, Laplace distri-

bution, Student t with 6 degrees of freedom (and therefore the same kurtosis as the Laplace),

and a discrete mixture of normals with skewness coefficient -.5 and kurtosis coefficient 6.

Despite the theoretical advantages and numerical robustness of our proposed tests, in prac-

tice, most researchers will test for first order Arch effects in yt by checking whether the first

order sample autocorrelation of �2t (θs) lies in the 95% confidence interval (−1.96/
√
T , 1.96/

√
T ).

Such a test, though, is nothing other than the test in (5) under the assumption that the con-

ditional distribution of the standardised innovations is i.i.d. N(0, 1). Apart from tradition, the

main justification for using a Gaussian test is the following (see e.g. Demos and Sentana (1998)):

Proposition 6 If in model (11) we assume that the conditional distribution of ε∗t is i.i.d.
N(0, 1), when in fact it is i.i.d. D(0, 1,%0), then (12) will still be distributed as a χ2 with 1
degrees of freedom as T goes to infinity under the null hypothesis of H0 : α = 0 as long as we
replace the Gaussian expression for Mss(η) with V

£
�2t (θs)

¯̄
θs0, 0,%0

¤
.

Notice that in this case we have to use Koenker’s (1981) version of the usual heteroskedas-

ticity test because the information matrix version of Engle’s (1982) test, which assumes that

V
£
�2t (θs)

¯̄
θs0, 0,%0

¤
= 2, will be incorrectly sized.

But again, it is important to emphasise that the orthogonality condition (14) underlying

our proposed Arch test also remains valid under the null regardless of whether or not the

assumed parametric distribution is correct. Therefore, if we fixed π, ω and η to some arbitrary

values, T ·R2 in the regression of 1+�t(θs)∂ ln f [�t(θs),η]/∂ε
∗ on a constant and �2t−1(θs) would

continue to be asymptotically distributed as a χ21 under the null. In practice, though, researchers

would typically replace θs and η by their ML estimators obtained on the basis of the assumed

distribution, θ̂s and η̂, say, and then apply our tests. In principle, one would have to take into

account the sampling uncertainty in those pseudo-MLE estimators of θ∞ and η∞. However, it

is not really necessary to robustify our proposed Arch test to distributional misspecification:

Proposition 7 If in model (11) we assume that the conditional distribution of ε∗t is i.i.d. with
density function f(.;η), when in fact it is i.i.d. D(0, 1,%0), then T · R2 in the regression of
1 + �t(θ̂s)∂ ln f [�t(θ̂s), η̂]/∂ε

∗ on a constant and �2t−1(θ̂s) will continue to be distributed as a χ2

with 1 degree of freedom as T goes to infinity under the null hypothesis H0 : α = 0.

10



In this sense, the result in Proposition 6 can be regarded as a corollary to Proposition 7 in

the Gaussian case. Similarly, the suggestion made in Proposition 2 of Machado and Santos Silva

(2000) to robustify Glejser’s heteroskedasticity test, which in our case would involve replacing

π by the sample median of yt, can also be regarded as a corollary to this Proposition in the

Laplace case.

Importantly, a test based on (14) will continue to have non-trivial power even though it will

no longer be an LM test. In fact, it might well be the case that our proposed tests are more

powerful than the usual regression-based tests in Proposition 6 even though the parametric

distribution is misspecified.

The test proposed in Proposition 5, though, requires to specify a parametric distribution.

Since some researchers might be reluctant to do so, we next consider semiparametric tests that

do not make any specific assumptions about the conditional distribution of the innovations

ε∗t . Once again, there are two possibilities: unrestricted nonparametric density estimates (SP)

and nonparametric density estimates that impose symmetry (SSP). It turns out that the as-

ymptotic null distribution of our proposed serial correlation test remains valid if we replace

∂ ln f [�t(θs),η]/∂ε
∗ by one of those non-parametric estimators:

Proposition 8 1. The asymptotic distribution of the test in Proposition 7 is unaffected if
we replace ∂ ln f [�t(θs),η0]/∂ε

∗ by a non-parametric estimator and π0 and ω0 by their
efficient semiparametric estimators under the null defined in (5) and (6), which coincide
with the sample mean and variance of yt.

2. The same result is true if we replace ∂ ln f [�t(θs),η0]/∂ε
∗ by a non-parametric estima-

tor that imposes symmetry, and π0 and ω0 by their efficient symmetric semiparametric
estimators under the null, which are defined in (7) and (8).

In addition, the semiparametric predictability test is adaptive, in the sense that it is as pow-

erful as if we knew the distribution of ε∗t , including the true values of the shape parameters η (see

Linton and Steigerwald (2000)). Similarly, the symmetric semiparametric test will be adaptive

too if the true distribution is symmetric. As before, though, the power of these semiparametric

procedures in finite samples may not be well approximated by the first-order asymptotic theory

that justifies their adaptivity.

3.2 Exploiting the persistence of volatilities

Let us now consider a situation in which

σ2t (θ) = ω(1−
Xq

j=1
αj) +

Xq

j=1
αj(yt−j − π)2,

with q > 1 but finite, so that the null hypothesis of conditional homoskedasticity becomes

H0 : α1 = . . . = αq = 0. In view of our previous discussion, it is not difficult to see that under

11



this maintained assumption the score test of αj = 0 will be based on the orthogonality condition

E

∙½
1 +

∂ ln f [�t(θs),η0]

∂ε∗
�t(θs)

¾
�2t−1(θs)|θs0, 0,η0

¸
= 0.

Given that under then null hypothesis yt is independent and identically distributed, it is

straightforward to show that the joint test for Arch(q) dynamics will be given by the sum of q

terms of the form

T · Ḡ2s(j)

Iαα(θs0, 0,η0)
for l = 1, . . . , q, whose asymptotic distribution would be a χ2q under the null.

But since the inequality constraints α1 ≥ 0, . . . , αq ≥ 0 must be satisfied to guarantee

nonnegative conditional variances of an Arch(q) model, an even more powerful test can be

obtained if we test H0 : α1 = 0, . . . , αq = 0 versus H1 : α1 ≥ 0, . . . , αq ≥ 0, with at least

one strict inequality. An argument analogous to the one in Demos and Sentana (1998) shows

that a version of the Kuhn-Tucker multiplier test of Gourieroux, Holly and Monfort (1980) can

be simply computed as the sum of the square t-ratios associated with the positive estimated

coefficients in the regression of ∂ ln f [�t(θs),η]/∂ε∗ · �t(θs) on a constant and the first q lags of
�2t (θs). The asymptotic distribution of such a test will be given by

Pq
i=0

¡q
i

¢
2−qχ2i , which is a

mixture of q + 1 independent χ20s whose critical values can be found in Table 1 in that paper.

Nevertheless, there is a lot of evidence which suggests that volatilities are rather persistent

processes. In this sense, the obvious model that we shall use to capture such an effect is a

Garch(1, 1) process in which q is in fact unbounded, and αj = αβj−1 for j = 1, 2, . . .

From the econometric point of view, this model introduces some additional complications

because the parameter β becomes underidentified when α = 0 (see Bollerslev (1986)). Note,

though, that since σ2t (θ) = ω(1 − β)−1 + α
Pt−2

j=0 β
jε2t−j−1(θ), α has to be positive under the

alternative to guarantee nonnegative variances everywhere, we should still test H0 : α = 0

vs. H1 : α ≥ 0 even if we knew β. One solution to testing situations such as this involves

computing the test statistic for many values of β in the range [0,1), which are then combined

to construct an overall statistic, as initially suggested by Davies (1977, 1987). Andrews (2001)

discusses ways of obtaining critical values for such tests by regarding the different LM statistics

as continuous stochastic processes indexed with respect to the parameter β. An alternative

solution involves choosing an arbitrary value of β, β̄ say, to carry out a one-sided LM test as

TR̃2 from the regression of {1 + ∂ ln f [�t(θs),η0]/∂ε
∗ · �t(θs)} on a constant and the distributed

lag
Pt−2

j=0 β̄
j
�2t−j−1(θs) (see Demos and Sentana (1998)). The one-sided versions of such tests

are asymptotically distributed as a 50 : 50 mixture of χ20 and χ21 irrespective of the value of

β̄. Obviously, the chosen value of β̄ influences the small sample power of the test, an issue
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to which we shall return in the next section, but the advantage is that the resulting test has

a standard distribution under H0. An attractive possibility is to choose β̄ equal to the decay

factor recommended by RiskMetrics (1996) to obtain their widely used exponentially weighted

average volatility estimates (e.g. β̄ = .94 for daily observations). In this respect, note that

since the RiskMetrics volatility measure is proportional to
Pt−2

j=0 β̄
j
�2t−j−1(θs), in effect our

proposed Garch(1,1) tests differ from the Arch(q) tests discussed before in that the q lags

of the squared residuals are replaced by the RiskMetrics volatility estimate in the auxiliary

regressions. Straightforward algebra shows that the asymptotic variance of this statistic would

be (1− β̄
2
)−1Iαα(θs0, 0,η0) under the null of conditional homoskedasticity.

3.3 The relative power of variance predictability tests

Let us begin by assessing the power gains obtained by exploiting the persistence of conditional

variances. For simplicity, we begin by comparing the Gaussian versions of the Arch(1) and

fixed-β̄ Garch(1,1) tests, and evaluate asymptotic power against compatible sequences of local

alternatives of the form α0T = ᾱ/
√
T . As we show in Appendix B, when the true model is

(9), the non-centrality parameter of the Gaussian pseudo-score test based on the first order

serial correlation coefficient of �2t (θs) is ᾱ
2 regardless of the true value of β. In contrast, the

non-centrality parameter of the fixed-β̄ Garch(1,1) test is ᾱ2(1 − β̄
2
)/(1 − β̄β0)

2. Hence, the

asymptotic relative efficiency of the two tests is (1 − β̄
2
)/(1 − β̄β0)

2, which is not surprisingly

maximised when β̄ = β0. Figure 5a shows that for a realistic value of β0 these efficiency gains

yield substantive power gains when we set β̄ to its Riskmetrics value of .94

Let us now study the power gains obtained by considering distributions other than the

normal. The following proposition gives us the necessary ingredients:

Lemma 2 If the true DGP corresponds to (11) with α0 = 0, then the feasible ML estimator
of α is as efficient as the infeasible ML estimator, which require knowledge of η0. If in ad-
dition the conditional distribution is symmetric and κ0 < ∞, then the elliptically symmetric
semiparametric estimator of α is also fully efficient. The same is true in general of the semi-
parametric estimator of α. In contrast, the inefficiency ratio of the Gaussian PML estimator of
α is 4/[(κ0 − 1)Mss(η0)], whereMss(η0) is defined in (13).

Proposition 2 then implies that the local non-centrality parameter of the Gaussian test

for Arch is α2, while the non-centrality parameter of the parametric test for Arch is 14 [(κ0 −
1)Mss(η0)]α

2. Figure 5b assesses the power gains under the assumption that the true conditional

distribution of ε∗t is a Student t with either 6 or 4.5 degrees of freedom. This figure confirms

that the power gains that accrue to our proposed Arch tests by exploiting the leptokurtosis

of the t distribution are in fact more pronounced than the corresponding gains in the mean

predictability tests. Similarly, Figure 5c repeats the same exercise for two discrete location scale
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mixture of normals whose kurtosis coefficients are both 6, and whose skewness coefficients are

-.5 and -1.219, respectively. In this case, our test yield also yield significant power gains. In this

sense, it is worth remembering that since our semiparametric tests are adaptive, they should

achieve these gains, at least asymptotically.

4 Monte Carlo analysis

4.1 Design

In this section, we assess the finite sample performance of the different testing procedures

discussed above by means of an extensive Monte Carlo exercise adapted to the empirical ap-

plication in section 5. Specifically, we consider the following univariate, covariance stationary

Ar(12)-Garch(1,1) model:

yt = µt(π0, ρ0) + σt(θ0)ε
∗
t ,

µt(π, ρ) = π(1− 12ρ) + ρ
P12

j=1 yt−j ,
σ2t (θ) = ω(1− α− β)υ(ρ) + αj [yt−1 − µt−1(π, ρ)]2 + βσ2t−1(θ),

ε∗t |It−1;θ0,η0 ∼ i.i.d. D(0, 1,η0).

We choose υ(ρ) in such a way that by construction E(yt) = π and V (yt) = ω. We set π = .5 and

ω = 18. Although these values are inconsequential for our econometric results, in annualised

terms they imply a realistic risk premia of 6%, a standard deviation 14.7%, and a Sharpe ratio

.41. For the sake of brevity we only report the results for T = 720 observations (plus another

100 for initialisation), which correspond to 60 years of monthly data, roughly the same as in

our empirical analysis. We systematically rely on 20,000 replications, which means, for instance,

that the 95% confidence interval for a nominal size of 5% would be (4.7%,5.3%). As for η0, we

consider four different standardised distributions: Gaussian, Student t6, a standardised mixture

of two normals with finite higher order moments, the same kurtosis (=6) but negative skewness

(=-.5), and an asymmetric t distribution with the maximum negative skewness compatible with

the kurtosis of a univariate t6 (=-1.219; see Mencia and Sentana (2009a,b) for details).

These distributions allow us to assess the reliability of our asymptotically robust tests, and

to shed some light on the advantages of those tests that exploit the leptokurtosis and potential

asymmetries of financial returns.

Importantly, we use the same underlying pseudo-random numbers in all designs to minimise

experimental error. In particular, we make sure that the standard Gaussian random variables

are the same for all four distributions. Given that the usual routines for simulating gamma

random variables involve some degree of rejection, which unfortunately can change for different

values of η, we use the slower but smooth inversion method based on the NAG G01FFF gamma
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quantile function so that we can keep the underlying uniform variates fixed across simulations.

Those uniform random variables are also recycled to generate the normal mixture.

For each Monte Carlo sample thus generated, our ML estimation procedure employs the

following numerical strategy. First, we estimate the static mean and variance parameters θs

under normality in closed form using (5) and (6). Then, we compute the sample coefficient of

kurtosis κ, on the basis of which we obtain the sequential Method of Moments estimator of the

shape parameter of the t distribution suggested by Fiorentini, Sentana and Calzolari (2003),

which exploits the theoretical relationship η = max[0, (κ − 3)/(4κ − 6)]. Next, we could use
this estimator as initial value for a univariate optimisation procedure that uses the E04ABF

routine to obtain a sequential ML estimator of η, keeping π and ω fixed at their Gaussian PML

estimators. The resulting estimates of η, together with the PMLE of θs, become the initial

values for the t-based ML estimators. Following Fiorentini, Sentana and Calzolari (2003), the

final stage of our estimation procedure employs the following mixed approach: initially, we use

a scoring algorithm with a fairly large tolerance criterion; then, after “convergence” is achieved,

we switch to a Newton-Raphson algorithm to refine the solution. Both stages are implemented

by means of the NAG Fortran 77 Mark 19 library E04LBF routine (see Numerical Algorithm

Group 2001 for details), with the analytical expressions for the score and information matrix

I(φ0) derived in Section 2 of that paper. We rule out numerically problematic solutions by
imposing the inequality constraint 0 ≤ η ≤ .499. As for the discrete mixture of normals,

we use the EM algorithm described in Appendix D.5 to obtain good initial values, and then

we numerically maximise the log-likelihood function of yt in terms of the shape parameters

η = (δ,κ, λ)0 keeping θs fixed at their Gaussian ML estimates.

Computational details for the symmetric and general semiparametric procedures can be

found in Appendix B of Fiorentini and Sentana (2007). Given that a proper cross-validation

procedure is extremely costly to implement in a Monte Carlo exercise, we have chosen the

“optimal” bandwidth in Silverman (1986).

4.2 Finite sample size

The size properties under the null of the different LM tests for first-order serial correlation

are summarised in Figures 6a-6d using Davidson and MacKinnon’s (1998) p-value discrepancy

plots, which show the difference between actual and nominal test sizes for every possible nominal

size. When the distribution is Gaussian, all tests are very accurate. The same conclusion is

obtained when the distribution is a Student t or a discrete mixture of normals, although there

are some very minor distortions. Similarly, all tests are remarkably reliable when the conditional

distribution is an asymmetric Student t, which confirms the theoretical results in Proposition
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3. By and large we reach the same conclusions when we consider the restricted 12th-order serial

correlation tests discussed in section 2 (see Figures 7a-7d).

In turn, Figures 8a-8d show the size distortions of the two-sided versions of the different

Arch(1) tests. When the distribution is Gaussian, all tests are quite accurate, but when the

distribution is a Student t, a normal mixture or an asymmetric t, they tend to over-reject very

slightly for low significance values, and underreject for larger ones. This is particularly true of

the robust Gaussian tests, and to some extent of the test based on a two component normal

mixture, especially in the asymmetric t case.

Finally, Figures 9a-9d describe the finite size properties of the two-sided versions of the

different Garch(1) tests calculated with the discount factor β̄ = .94 suggested in Riskmetrics

(1996). In this case, the tendency to under-reject is attenuated and sometimes even reversed.

4.3 Finite sample power

In order to gauge the power of the serial correlation tests we look at a design in which

ρ = 2/
√
720 but α = 0. The evidence at the 5% significance level is presented in Table 1, which

includes raw rejection rates, as well as size adjusted ones based on the empirical distribution

obtained under the null, which in this case provides the closest match because the Gaussian

PML estimators of θs that ignore the dynamics in yt remain consistent in the presence of serial

correlation or conditional heteroskedasticity.

As expected from the theoretical analysis in section 2.3, our proposed tests show clear power

gains over standard (i.e. Gaussian) tests in the presence of non-normal distributions, with

the parametric tests performing somewhat better than the semiparametric ones even in those

situations in which the assumed distribution is misspecified.

We also look at a design with ρ = 0 but α = 2/
√
720 and β = 0 to assess the power of

the Arch(1) tests. Once again, we find that the usual Gaussian tests are dominated by all our

proposals, but the semiparametric tests fail to achieve maximum power.

5 Empirical application

In this section we apply the procedures considered previously to the three Fama and French

factors for US stocks, which we have obtained from Ken French’s Data Library (see<http://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html> for further details). We use

monthly data from January 1952 to December 2008, so that our sample begins soon after the

March 1951 Treasury - Federal Reserve Accord whereby the Fed stopped its wartime pegging

of interest rates. Thus, we consider 672 observations as we reserve 1952 for pre-sample values.
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The exact factor definition is as follows:

1. MK: Value-weight return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus

the one-month Treasury bill rate (from Ibbotson Associates).

2. SMB: Returns on small cap firms in excess of the returns on large cap firms.

3. HML: Returns on value firms in excess of the returns on growth firms.

Descriptive statistics can be found in Table 2. As can be seen, the most distinctive feature

of the distribution of monthly returns to these portfolios is their leptokurtosis. Once we take

this feature in to account, we also find some statistically significant evidence for skewness in the

market portfolio. The SMB and HML factors, on the other hand, appear to be symmetric.3

Table 3 reports the results of the different mean predictability tests discussed in section 2.

As can be seen, there is not consistent evidence of serial correlation in the market portfolio. In

contrast, there is substantial evidence that the SMB and HML factors are serially correlated.

This is true not only when we test against Ar(1) alternatives, but also when we consider

restrictedAr(12) alternatives too. This interesting divergence could be due to the fact that large

stocks, which dominate a value weighted portfolio by construction, are more closely followed by

investors than small, value stocks. Another result worth mentioning is the resemblance between

the Student t and SSP tests on the one hand, and the normal mixture and SP tests on the other.

Finally, Table 4 presents our tests for conditional heteroskedasticity. Not surprisingly, we

find very strong evidence of first order Arch effects. This evidence is typically stronger when

we use our fixed β Garch tests instead. Therefore, the lack of conditional homoskedasticity

that is observed at daily frequencies seems to get preserved in monthly data.

6 Conclusions

We propose more powerful score tests of predictability in the levels and squares of financial

returns by exploiting the non-normality of their distributions. For our purposes the conditional

distribution of returns can be either parametrically or non-parametrically specified.

We show that our score tests are equivalent to standard orthogonality tests of predictability

in which the regressand has been multiplied by a damping factor that reflects the skewness and

kurtosis of the data, as in the robust estimation literature. We also explain how to transform

the regressor to exploit the persistence of expected returns and volatilities.

Importantly, we show that our parametric tests remain valid regardless of whether or not the

assumed distribution is correct, which puts them on par with the Gaussian pseudo-maximum
3More formally, in both cases we find that the log likelihood function corresponding to a symmetric Student

t is hardly increased when we estimate an asymmetric t, or an asymmetric Generalised Hyperbolic (see Mencia
and Sentana (2009b) for details).
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likelihood (PML) testing procedures advocated by Bollerslev and Wooldridge (1992) among

many others. We also show that our non-parametric tests should be as efficient as if we knew

the true distribution of the data.

We present local power analyses that confirm that there are clear power gains from exploiting

the non-normality of financial returns, especially for variance predictability tests, as well as the

persistent behaviour of risk premia and volatility. We complement our theoretical results with

detailed Monte Carlo exercises that document the reliability of our mean predictability tests in

finite samples. In contrast, we find some mild size distortions in the conditionally homoskedas-

ticity tests. Given that yt is assumed i.i.d. under the null, it would be useful to explore bootstrap

procedures. In addition, we observe that our parametric tests offer clear power gains over the

usual Gaussian procedures even in those situations in which the assumed distribution is mis-

specified. Finally, we also observe that the finite sample power of the semiparametric procedures

is not well approximated by the first-order asymptotic theory that justifies their adaptivity.

When we apply our methods to monthly stock returns on the three Fama & French factors

for US stocks, we find clear evidence in favour of first order serial correlation in the size and

value factors only, slightly weaker evidence for persistent components in those factors, and no

evidence that such a component appears in the market portfolio. We also find strong evidence

for persistent serial correlation in the volatility of all three series.

It would be interesting to analyse the power gains of tests based on the wrong parametric

distribution along the lines of Amengual and Sentana (2010), who focus on mean variance effi-

ciency tests. Relatedly, we could study the effect of replacing the kernel-based non-parametric

density estimators that we have considered by either positive Hermite expansions of the normal

density (see e.g. León, Mencía and Sentana (2009)), or discrete normal mixture models with

multiple underlying components. In this sense, it is worth mentioning that the robustness of the

parametric dynamic specification tests that we have highlighted holds for those flexible distrib-

utions for any finite number of terms. In addition, one would expect that the larger the number

of components, the closer one would get to achieving the adaptivity of the semiparametric tests.

Another interesting extension would be to consider nonparametric alternatives, in which

the lag length is implicitly determined by the choice of bandwidth parameter in a kernel-based

estimator of a spectral density matrix (see e.g. Hong (1996) and Hong and Shehadeh (1999)).

In addition, we could test for the effect of exogenous regressors in either the conditional mean or

the conditional variance, either in univariate contexts, or in multivariate ones, as in Fiorentini

and Sentana (2009). We are currently exploring these interesting research avenues.
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Appendix

A Proofs

Proposition 1

Given the discussion in Appendix D, to find the score function and conditional information

matrix all we need is the matrix Zdt(θs), which in turn requires the Jacobian of the conditional

mean and covariance functions. In view of (1), we will have that

∂µt(π, 0, ω)/∂θ
0 =

¡
1 yt−1 − π 0

¢
and

∂σ2t (π, 0, ω)/∂θ
0 =

¡
0 0 1

¢
,

whence

Zdt(π, 0, ω) =

⎡⎣ ω−1/2 0
�t−1(θs) 0
0 1

2ω
−1

⎤⎦ , (A1)

so that

Zd(π0, 0, ω0,η0) =

⎡⎣ ω
−1/2
0 0
0 0

0 1
2ω
−1
0

⎤⎦ . (A2)

As a result, the score under the null will be⎡⎣ sπt(π, 0, ω,η)
sρt(π, 0, ω,η)
sωt(π, 0, ω,η)

⎤⎦ =
⎡⎣ −ω−1/2∂f [�t(θs), η] /∂ε∗

−∂f [�t(θs), η] /∂ε∗ · �t−1(θs)
−12ω−1[∂f [�t(θs), η] /∂ε∗ · �t(θs) + 1]

⎤⎦ .
Similarly, the conditional information matrix will be⎡⎢⎢⎣

ω−1/2 0 0
�t−1(θs) 0 0
0 1

2ω
−1 0

0 0 Iq

⎤⎥⎥⎦
⎛⎝ Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M0

lr(η) M0
sr(η) Mrr(η)

⎞⎠⎡⎣ ω−1/2 �t−1(θs) 0 0
0 0 1

2ω
−1 0

0 0 0 Iq

⎤⎦

=

⎡⎢⎢⎣
ω−1Mll(η) ω−1/2�t−1(θs)Mll(η)

1
2ω
−3/2Mls(η) ω−1/2Mlr(η)

ω−1/2�t−1(θs)Mll(η) �2t−1(θs)Mll(η)
1
2ω
−1�t−1(θs)Mls(η) �t−1(θs)Mlr(η)

1
2ω
−3/2Mls(η)

1
2ω
−1�t−1(θs)Mls(η)

1
4ω
−2Mss(η)

1
2ω
−1Msr(η)

ω−1M0
lr(η) �t−1(θs)M0

lr(η)
1
2ω
−1M0

sr(η) Mrr(η)

⎤⎥⎥⎦ ,
while the unconditional one becomes⎡⎢⎢⎣

ω−1Mll(η) 0 1
2ω
−3/2Mls(η) ω−1/2Mlr(η)

0 Mll(η) 0 0
1
2ω
−3/2Mls(η) 0 1

4ω
−2Mss(η)

1
2ω
−1Msr(η)

ω−1/2M0
lr(η) 0 1

2ω
−1M0

sr(η) Mrr(η)

⎤⎥⎥⎦ .
This result confirms the expression for Iρρ(φ), as well as the fact that the sampling uncertainty
in the ML estimators of π, ω and η is inconsequential for the asymptotic distribution of the test,

at least up to first order. ¤
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Proposition 2

As discussed in Appendix D.2, the asymptotic distribution of the Gaussian Pseudo ML

estimators and tests will depend on

Aθθ(θs, 0,0;θ0, 0,%0) = E[Aθθtθs, 0,0;θ0, 0,%0)|θ0, 0,%0],
Aθθt(θ,0;θ,%) = −E[hθθt(θ,0)| zt, It−1;θ,%] = Zdt(θ)K(0, 0)Z0dt(θ)

and

Bθθt(θ,0;θ,%) = V [sθt(θ;0)| zt, It−1;θ,%]] = Zdt(θ)K(ϕ, κ)Z0dt(θ),

where

K (ϕ,κ)=V [edt(θ,0)| zt, It−1;θ,%]]=
∙

1 ϕ(%)
ϕ(%) κ(%)− 1

¸
and % are the shape parameters of the true distribution of ε∗t .

But given the structure of Zdt(θ) in (A1) and the consistency of the Gaussian PML estimators

of π and ω, which implies that E[�t(θs0)|θ0, 0,%0] = 0, it is clear that Aθθ(θs, 0,0;θ0, 0,%0) will
be block diagonal between ρ and θs irrespective of the true distribution of yt. In addition,

Aρρ(θs, 0,0;θ0, 0,%0) will coincide with Iρρ(θs, 0,%0). A closely related argument shows that

Bθθt(θ,0;θ,%) will also be block diagonal between ρ and θs, and that Bρρ(θs, 0,0;θ0, 0,%0) =
Aρρ(θs, 0,0;θ0, 0,%0). As a result, the Gaussian-based LM test for H0 : ρ = 0 remains valid

irrespective of the true distribution of yt. ¤

Proposition 3

We can use standard arguments (see e.g. Newey and McFadden (1994)) to show that
√
T

T

XT

t=1
sρt(φ̂s, 0) =

√
T

T

XT

t=1
sρt(φs∞, 0) +

1

T

XT

t=1
hρφst(φs∞, 0)

√
T (φ̂s − φs∞) + op(1)

=

√
T

T

XT

t=1
sρt(φs∞, 0)−

1

T

XT

t=1
hρφst(φs∞, 0)

∙
1

T

XT

t=1
hφsφst(φs∞, 0)

¸−1
×
√
T

T

XT

t=1
sφst(φs∞, 0) + op(1),

where φs = (θ0s,η0)0. Hence, the asymptotic variance of
√
T
T

PT
t=1 sρt(φ̂s, 0) will be given by

Fρρ(θs∞, 0,η∞;θs0, 0,%0), where

Fρρ = Bρρ − 2AρφsA−1φsφsB
0
ρφs

+AρφsA−1φsφsBφsφsA
−1
φsφs

A0ρφs ,

and Bρρ, Aρφs , etc. are the relevant elements of

B(θs, 0,η;θs0, 0,%0) = V [sφt(θs, 0,η)|θs0, 0,%0),
A(θs, 0,η;θs0, 0,%0) = −E[hφφt(θs, 0,η)|θs0, 0,%0).
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Tedious but straightforward algebra shows that at ρ = 0 :

hππt(φ) = ω−1∂2 ln f [�t(θs),η] /∂ε∗∂ε∗

hπωt(φ) = 1
2ω
−3/2{∂2 ln f [�t(θs),η] /∂ε∗∂ε∗ · �t(θs) + ∂ ln f [�t(θs),η] /∂ε

∗}
hπηt(φ) = −ω−1/2∂2 ln f [�t(θs),η] /∂ε∗∂η0

hωωt(φ) = 1
2ω
−2{1 + 3

2∂ ln f [�t(θs),η] /∂ε
∗ · �t(θs) + 1

2∂
2 ln f [�t(θs),η] /∂ε

∗∂ε∗ · �2t (θs)}
hωηt(φ) = −12ω−2∂2 ln f [�t(θs),η] /∂ε∗∂η0 · �t(θs)
hηηt(φ) = ∂2 ln f [�t(θs),η] /∂η∂η

0

Similarly, we can show that at ρ = 0

hρπt(φ) = ω−1/2{∂2 ln f [�t(θs),η] /∂ε∗∂ε∗ · �t−1(θs) + ∂ ln f [�t(θs),η] /∂ε
∗}

hρωt(φ) = 1
2ω
−1{∂2 ln f [�t(θs),η] /∂ε∗∂ε∗ · �t(θs) + ∂ ln f [�t(θs),η] /∂ε

∗} · �t−1(θs)
hρηt(φ) = −∂2 ln f [�t(θs),η] /∂ε∗∂η · �t−1(θs)

Given that the pseudo-true values of π, ω and η are implicitly defined in such a way that

E{∂ ln f [�t(θs∞),η∞] /∂ε∗|ϕ} = 0,

E{1 + ∂ ln f [�t(θs∞),η∞] /∂ε
∗ · �t(θs∞)|ϕ} = 0,

E{∂ ln f [�t(θs∞),η∞] /∂η|ϕ} = 0,

the law of iterated expectations implies that

E[hππt(φ∞)|It−1;ϕ] = ω−1∞ Hll(φ∞;ϕ)

E[hπωt(φ∞)|It−1;ϕ] = 1
2ω
−3/2
∞ Hls(φ∞;ϕ)

E[hπηt(φ∞)|It−1;ϕ] = −ω−1/2∞ Hlr(φ∞;ϕ)

E[hωωt(φ∞)|It−1;ϕ] = 1
4ω
−2
∞ [Hss(φ∞;ϕ)− 1]

E[hωηt(φ∞)|It−1;ϕ] = −12ω−1∞Hsr(φ∞;ϕ)

E[hωηt(φ∞)|It−1;ϕ] = Hrr(φ∞;ϕ)

and

E[hρπt(φ∞)|It−1;ϕ] = ω−1/2∞ Hll(φ∞;ϕ) · �t−1(θs∞)
E[hρωt(φ∞)|It−1;ϕ] = 1

2ω
−1
∞ Hls(φ;ϕ) · �t−1(θs∞)

E[hρηt(φ∞)|It−1;ϕ] = −Hlr(φ∞;ϕ) · �t−1(θs∞)
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where

Hll(φ;ϕ) = E[∂2 ln f [�t(θs),η] /∂ε
∗∂ε∗|It−1;ϕ]

Hls(φ;ϕ) = E[∂2 ln f [�t(θs),η] /∂ε
∗∂ε∗ · �t(θs)|It−1;ϕ]

Hlr(φ;ϕ) = E[∂2 ln f [�t(θs),η] /∂ε
∗∂η0|It−1;ϕ]

Hss(φ;ϕ) = E[∂2 ln f [�t(θs),η] /∂ε
∗∂ε∗ · �2t (θs)|It−1;ϕ]

Hsr(φ;ϕ) = E[∂2 ln f [�t(θs),η] /∂ε
∗∂η0 · �t(θs)|It−1;ϕ]

Consequently,

E[hρπt(φ∞)|ϕ] = ω−1/2∞ Hll(φ∞;ϕ) ·E[�t−1(θs∞)|ϕ]
E[hρωt(φ∞)|ϕ] = 1

2ω
−1
∞Hls(φ;ϕ) ·E[�t−1(θs∞)|ϕ]

E[hρηt(φ∞)|ϕ] = −Hlr(φ∞;ϕ) ·E[�t−1(θs∞)|ϕ]

where

E[�t(θs)|ϕ0] = E[ω−1/2(yt − π)|ϕ0] = E[ω−1/2(π0 + ω
1/2
0 ε∗t − π)|ϕ0] = ω−1/2(π0 − π).

On this basis, we can show that

AρφsA−1φsφs =
¡
E[�t(θs∞)|ϕ0]

√
ω∞ 0 00

¢
if we evaluate these expressions at the pseudo true values. Therefore, the only elements of

B(φ;ϕ) that we need are the ones corresponding to π and ρ. But since

B(φ;ϕ) = E[Bt(φ;ϕ)|ϕ],
Bt(φ;ϕ) = V [sφt(θs, 0,η)| It−1;ϕ] = Zt(θ)K(φ;ϕ)Z0t(θ),

K(φ;ϕ) = V

⎡⎣⎛⎝ elt(φ)
est(φ)
ert(φ)

⎞⎠¯̄̄̄¯̄ϕ
⎤⎦ =

⎡⎣ Kll(φ;ϕ) Kls(φ;ϕ) K0lr(φ;ϕ)
Kls(φ;ϕ) Kss(φ;ϕ) K0sr(φ;ϕ)
Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)

⎤⎦
we will have that under the null of H0 : ρ = 0,∙ Bππ(φ;ϕ) Bπρ(φ;ϕ)

Bπρ(φ;ϕ) Bρρ(φ;ϕ)
¸
= Kll(φ;ϕ)

"
ω−1∞ ω

−1/2
∞ E[�t(θs∞)|ϕ0]

ω
−1/2
∞ E[�t(θs∞)|ϕ0] E[�2t (θs∞)|ϕ0]

#
.

Finally we obtain

Fρρ(θs∞, 0,η∞;θs0, 0,%0) = Kll(φ∞;ϕ0)V [�t(θs∞)|ϕ0],

which is precisely the denominator of the R2 in the regression of ∂ ln f [�t(θs),η] /∂ε∗ on a

constant and �t−1(θs∞). ¤
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Proposition 4

Given that

W0
d(π0, 0, ω0,η0) =

¡
0 1

2ω
−1
0 0

¢
,

it is easy to see that the symmetric semiparametric efficient score and bound are given by:

s̊θt(φ0) = Zdt(θ0)edt(φ0)−Ws(φ0)

½
− £∂ ln f [�t(θs),η] /∂ε∗�2t (θs0) + 1¤− 2

κ− 1
£
�2t (θ0)− 1

¤¾

and

S̊(φ0) =
⎡⎣ 1

ωMll(η) 0 0
0 Mll(η) 0
0 0 1

ω2(κ−1)

⎤⎦ .
Similarly, we can use the expression for (A2) to show that the semiparametric efficient score

will be given by:

Zdt(θ0,%0)edt(θ0,%0)− Zd(θ0,%0)
£
edt(θ0,%0)−K (0)K−1 (ϕ, κ) edt(θ0,0)

¤
,

while the semiparametric efficiency bound is

S(φ0) =

⎡⎣ ω−1Mll(η) 0 1
2ω
−3/2Mls(η)

0 Mll(η) 0
1
2ω
−3/2Mls(η) 0 1

4ω
−2Mss(η)

⎤⎦−
⎛⎝ ω

−1/2
0 0
0 0

0 1
2ω
−1
0

⎞⎠½∙ Mll(η) Mls(η)
Mls(η) Mss(η)

¸

−
µ
1 0
0 2

¶µ
1 ϕ
ϕ κ− 1

¶−1µ
1 0
0 2

¶)Ã
ω
−1/2
0 0 0

0 0 1
2ω
−1
0

!

=

⎡⎣ ω−1 0 1
2ω
−3/2ϕ

0 Mll(η) 0
1
2ω
−3/2ϕ 0 1

4ω
−2(κ− 1)

⎤⎦ .
. ¤

Lemma 1

The proof is trivial if we combine several results that appear in the proofs of Propositions 1,

2 and 4. ¤

Proposition 5

As explained in Appendix D, we must start once again by finding an expression for the

matrix Zdt. Given (11), we will have that

∂µt(θs, 0)/∂θ
0 =

¡
1 0 0

¢
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and

∂σ2t (θs, 0)/∂θ
0 =

¡
0 1 (yt−1 − π)2 − ω

¢
,

whence

Zdt(θs, 0) =

⎡⎣ ω−1/2 0
0 1

2ω
−1

0 1
2 [�

2
t−1(θs)− 1]

⎤⎦ , (A3)

so that

Zd(θs, 0,η0) =

⎡⎣ ω
−1/2
0 0

0 1
2ω
−1
0

0 0

⎤⎦ . (A4)

As a result, the score under the null will be⎡⎣ sπt(θs, 0,η)
sωt(θs, 0,η)
sαt(θs, 0,η)

⎤⎦ =
⎡⎣ −ω−1/2∂f [�t(θs), η] /∂ε∗

−12ω−1[∂f [�t(θs), η] /∂ε∗ · �t(θs) + 1]
−12 [∂f [�t(θs), η] /∂ε∗ · �t(θs) + 1][�2t−1(θs)− 1]

⎤⎦ .
Similarly, the conditional information matrix will be⎡⎢⎢⎣

ω−1/2 0 0
0 1

2ω
−1 0

0 1
2 [�

2
t−1(θs)− 1] 0

0 0 Iq

⎤⎥⎥⎦
⎛⎝ Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M0

lr(η) M0
sr(η) Mrr(η)

⎞⎠

×
⎡⎣ ω−1/2 0 0 0

0 1
2ω
−1 1

2 [�
2
t−1(θs)− 1] 0

0 0 0 Iq

⎤⎦

=

⎡⎢⎢⎣
ω−1Mll(η)

1
2ω
−3/2Mls(η)

1
2ω
−3/2Mls(η)

1
4ω
−2Mss(η)

1
2ω
−1/2[�2t−1(θs)− 1]Mls(η)

1
4ω
−1[�2t−1(θs)− 1]Mss(η)

ω−1/2M0
lr(η)

1
2ω
−1M0

sr(η)
1
2ω
−1/2[�2t−1(θs)− 1]Mls(η) ω−1/2Mlr(η)

1
4ω
−1[�2t−1(θs)− 1]Mss(η)

1
2ω
−1Msr(η)

1
4 [�

2
t−1(θs)− 1]2Mss(η)

1
2 [�

2
t−1(θs)− 1]Msr(η)

1
2 [�

2
t−1(θs)− 1]M0

sr(η) Mrr(η)

⎤⎥⎥⎦ ,
while the unconditional one becomes⎡⎢⎢⎣

1
ωMll(η)

1
2ω
−3/2Mls(η) 0 1

2ω
−1/2Mlr(η)

1
2ω
−3/2Mls(η)

1
4ω
−2Mss(η) 0 1

2ω
−1Msr(η)

0 0 κ−1
4 Mss(η) 0

ω−1/2M0
lr(η)

1
2ω
−1M0

sr(η) 0 Mrr(η)

⎤⎥⎥⎦ .
This result confirms the expression for Iαα(φ), as well as the fact that the sampling uncer-

tainty in the ML estimators of π, ω and η is inconsequential for the asymptotic distribution of

the test, at least up to first order.
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Proposition 6

Once again, the asymptotic distribution of the Gaussian Pseudo ML estimators and tests

will depend on

Aθθ(θs, 0,0;θ0, 0,%0) = E[Aθθtθs, 0,0;θ0, 0,%0)|θ0, 0,%0],
Aθθt(θ,0;θ,%) = −E[hθθt(θ,0)| zt, It−1;θ,%] = Zdt(θ)K(0, 0)Z0dt(θ)

and

Bθθt(θ,0;θ,%) = V [sθt(θ;0)| zt, It−1;θ,%]] = Zdt(θ)K(ϕ, κ)Z0dt(θ),
where

K (ϕ,κ)=V [edt(θ,0)| zt, It−1;θ,%]=
∙

1 ϕ(%)
ϕ(%) κ(%)− 1

¸
and % are the shape parameters of the true distribution of ε∗t .

But given the structure of Zdt(θ) in (A3) and the consistency of the Gaussian PML estima-

tors of π and ω, which implies that E[�2t (θs0)|θ0, 0,%0] = 1, it is clear that Aθθ(θs, 0,0;θ0, 0,%0)
will be block diagonal between α and θs irrespective of the true distribution of yt. In ad-

dition, Aαα(θs, 0,0;θ0, 0,%0) will coincide with Iαα(θs, 0,%0) provided that we use the true
value of κ(%) − 1 instead of its value under normality. A closely related argument shows that
Bθθt(θ,0;θ,%) will also be block diagonal between α and θs, and that Bρρ(θs, 0,0;θ0, 0,%0) =
1
2 [κ(%)−1]Aρρ(θs, 0,0;θ0, 0,%0). As a result, the Gaussian-based LM test forH0 : α = 0 remains

valid irrespective of the true distribution of yt as long as we replace the 2 in the denominator

by the variance of the score. ¤

Proposition 7

We can again use standard arguments (see e.g. Newey and McFadden (1994)) to show that
√
T

T

XT

t=1
sαt(φ̂s, 0) =

√
T

T

XT

t=1
sαt(φs∞, 0) +

1

T

XT

t=1
hαφst(φs∞, 0)

√
T (φ̂s − φs∞) + op(1)

=

√
T

T

XT

t=1
sαt(φs∞, 0)−

1

T

XT

t=1
hαφst(φs∞, 0)

∙
1

T

XT

t=1
hφsφst(φs∞, 0)

¸−1
×
√
T

T

XT

t=1
sφst(φs∞, 0) + op(1),

where φs = (θ0s,η0)0. Hence, the asymptotic variance of
√
T
T

PT
t=1 sαt(φ̂s, 0) will be given by

Fαα(θs∞, 0,η∞;θs0, 0,%0), where

Fαα = Bαα − 2AαφsA−1φsφsB
0
αφs

+AαφsA−1φsφsBφsφsA
−1
φsφs

A0αφs ,

and Bαα, Aαφs , etc. are the relevant elements of

B(θs, 0,η;θs0, 0,%0) = V [sφt(θs, 0,η)|θs0, 0,%0),
A(θs, 0,η;θs0, 0,%0) = E[hφφt(θs, 0,η)|θs0, 0,%0).
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Tedious but straightforward algebra shows that at α = 0 :

hαπt(φ) = 1
2ω
−1/2{∂2 ln f [�t(θs),η] /∂ε∗∂ε∗ · �t(θs) + ∂ ln f [�t(θs),η] /∂ε

∗} · [�2t−1(θs)− 1]
+ω−1/2{∂ ln f [�t(θs),η] /∂ε∗∂ε∗ · �t(θs) + 1} · �t−1(θs)

hαωt(φ) = 1
4ω
−1{∂2 ln f [�t(θs),η] /∂ε∗∂ε∗ · �2t (θs) + ∂ ln f [�t(θs),η] /∂ε

∗ · �t(θs)} · [�2t−1(θs)− 1]
+1
2ω
−1{∂ ln f [�t(θs),η] /∂ε∗∂ε∗ · �t(θs) + 1} · �2t−1(θs)

hαηt(φ) = −12∂2 ln f [�t(θs),η] /∂ε∗∂η · �t(θs) · [�2t−1(θs)− 1]

Given that the pseudo-true values of π, ω and η are implicitly defined in such a way that

E{∂ ln f [�t(θs∞),η∞] /∂ε∗|ϕ} = 0,

E{1 + ∂ ln f [�t(θs∞),η∞] /∂ε
∗ · �t(θs∞)|ϕ} = 0,

E{∂ ln f [�t(θs∞),η∞] /∂η|ϕ} = 0,

the law of iterated expectations implies that

E[hαπt(φ∞)|ϕ] = 1
2ω
−1/2
∞ Hls(φ∞;ϕ) ·E[�2t−1(θs)− 1|ϕ]

E[hαωt(φ∞)|ϕ] = 1
4ω
−1
∞ [Hss(φ∞;ϕ)− 1] ·E[�2t−1(θs)− 1|ϕ]

E[hαηt(φ∞)|ϕ] = −12Hlr(φ∞;ϕ) ·E[�2t−1(θs∞)− 1|ϕ]

where Hls(φ;ϕ), Hss(φ;ϕ) and Hsr(φ;ϕ) are definied in the proof of Proposition 3, while

E[�2t (θs)−1|ϕ0] = E[ω−1(yt−π)2|ϕ0] = E[ω−1(π0+ω
1/2
0 ε∗t−π)2|ϕ0] = ω−1[(π0−π)2+(ω0−ω)].

Similarly, it is clear that when α = 0 the expressions for the Hessian elements corresponding

to π, ω and η will coincide with the ones obtained in the proof of Proposition 3 evaluated at

ρ = 0, and the same is true of their expected values.

On this basis, we can easily show that

AαφsA−1φsφs =
¡
0 E[�2t (θs∞)− 1|ϕ0]ω∞ 0

¢
if we evaluate these expressions at the pseudo true values. Therefore, the only elements of

B(φ;ϕ) that we need are the ones corresponding to ω and α. But since

B(φ;ϕ) = E[Bt(φ;ϕ)|ϕ],
Bt(φ;ϕ) = V [sφt(θs, 0,η)| It−1;ϕ] = Zt(θ)K(φ;ϕ)Z0t(θ),

where K(φ;ϕ) is also defined in the proof of Proposition 3, we will have that under the null of
H0 : α = 0,∙ Bωω(φ;ϕ) Bωα(φ;ϕ)
Bωα(φ;ϕ) Bαa(φ;ϕ)

¸
=
1

4
Kss(φ;ϕ)

∙
ω−2∞ ω−1∞ E[�2t (θs∞)− 1|ϕ0]

ω−1∞ E[�2t (θs∞)− 1|ϕ0] E{[�2t (θs∞)− 1]2|ϕ0}
¸
.
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Finally we obtain

Fαα(θs∞, 0,η∞;θs0, 0,%0) =
1

4
Kss(φ∞;ϕ0)V [�

2
t (θs∞)]|ϕ0],

which is precisely the denominator of theR2 in the regression of 1+�t(θs∞)∂ ln f [�t(θs∞),η∞] /∂ε∗

on a constant and �2t−1(θs∞). ¤

Proposition 8

Given that

W0
d(π0, 0, ω0,η0) =

¡
0 1

2ω
−1
0 0

¢
,

it is easy to see that

S̊(φ0) =
⎡⎣ ω−1Mll(η) 0 0

0 1
(κ−1)ω2 0

0 0 κ−1
4 Mss(η)

⎤⎦ .
Similarly, we can use the expression for (A2) to show that

S(φ0) =

⎡⎣ ω−1Mll(η) 0 1
2ω
−3/2Mls(η)

0 1
4ω
−2Mss(η) 0

1
2ω
−3/2Mls(η) 0 κ−1

4 Mss(η)

⎤⎦−
⎛⎝ ω

−1/2
0 0

0 1
2ω
−1
0

0 0

⎞⎠½∙ Mll(η) Mls(η)
Mls(η) Mss(η)

¸

−
µ
1 0
0 2

¶µ
1 ϕ
ϕ κ− 1

¶−1µ
1 0
0 2

¶)Ã
ω
−1/2
0 0 0

0 1
2ω
−1
0 0

!

=

⎡⎣ ω−1 1
2ω
−3/2ϕ 0

1
2ω
−3/2ϕ 1

4ω
−2(κ− 1) 0

0 0 κ−1
4 Mss(η)

⎤⎦ .
. ¤

Lemma 2

The proof is trivial if we combine several results that appear in the proofs of Propositions 5,

6 and 8. ¤
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B Local power calculations

Let mt(θ1,θ2) denote the h influence functions used to develop the following moment test

of H0 : θ2 = 0:

MT = Tm̄0
T (θ10,0)Ψ

−1m̄T (θ10,0), (B5)

where m̄T (θ10,0) is the sample average of mt(θ) evaluated under the null, and Ψ is the corre-

sponding asymptotic covariance matrix. In order to obtain the non-centrality parameter of this

test under Pitman sequences of local alternatives of the form H0 : θ2T = θ̄2/
√
T , it is convenient

to linearise mt(θ10,0) with respect to θ2 around its true value θ2T . This linearisation yields

√
Tm̄T (θ10,0) =

√
Tm̄T (θ10,θ2T ) +

1

T

XT

t=1

∂mt(θ10,θ
∗
2T )

∂θ02
θ̄2,

where θ∗2T is some “intermediate” value between θ2T and 0. As a result,

√
Tm̄T (θ10,0)→ N [M(θ10,0)θ̄2,Ψ],

under standard regularity conditions, where

M(θ10,0) = E[∂mt(θ10,0)/∂θ
0
2],

so that the non-centrality parameter of the moment test (B5) will be

θ̄
0
2M

0(θ10,0)Ψ−1M(θ10,0)θ̄2. (B6)

On this basis, we can easily obtain the limiting probability of MT exceeding some pre-

specified quantile of a central χ2h distribution from the cdf of a non-central χ2 distribution with

h degrees of freedom and non-centrality parameter (B6).

Finally, note that (B6) remains valid when we replace θ10 by its ML estimator under the

null if mt(θ1,0) and the scores corresponding to θ1 are asymptotically uncorrelated when H0 is

true, as in all our tests under correct specification. In addition, bothM(θ10,0) and Ψ coincide

with the (2,2) block of the information matrix when mt(θ1,θ2) are the scores with respect to

θ2. This result confirms that the non-centrality parameters of LM and Wald tests will be the

same under sequences of local alternatives, which simplifies their computation.

Serial correlation tests

Let us assume without loss of generality that π = 0. The first-order serial correlation test is

effectively based on the influence functions

mlt(θs, ρ) = ytyt−1 −Gyy(1)
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evaluated at ρ = 0. But since

yt =

µ
1 +

Xh

l=1
ρLl

¶
εt,

we will have that

Gyy(0) = [1 + (h− 1)ρ2]σ2

The Yule-Walker equations of the model considered in (9) will be given by

Gyy(1)
Gyy(0)

= ρ
h
1 +

Gyy(1)
Gyy(0)

+ . . .+
Gyy(h−1)
Gyy(0)

i
Gyy(2)
Gyy(0)

= ρ
h
Gyy(1)
Gyy(0)

+ 1 + . . .+
Gyy(h−2)
Gyy(0)

i
...

...
Gyy(h−1)
Gyy(0)

= ρ
h
Gyy(h−2)
Gyy(0)

+
Gyy(h−3)
Gyy(0)

+ . . .+
Gyy(1)
Gyy(0)

i
whence

Gyy(1) =
ρ

1− (h− 1)ρ [1 + (h− 1)ρ
2]σ2.

Hence, it trivially follows that

Ml(θs,0) = E[∂mlt(θs, 0)/∂ρ] = −σ2.

As for the asymptotic covariance matrix, the proof of Proposition 2 implies that if ρ = 0, then

√
Tmlt(θs, 0) =

√
T

T

XT

t=1
yty

0
t−1 → N(0, σ4)

irrespective of the distribution of yt. As a result, the non-centrality parameter will be ρ2 regard-

less of h.

In contrast, the test that uses the influence function

yt
Xh

l=1
yt−l −

Xh

l=1
Gyy(l)

will be asymptotically equivalent to the Wald test based on the Gaussian PML estimator ρ,

whose non-centrality parameter is hρ2, which is clearly bigger than ρ2 for any h > 1.

It is also interesting to study the opposite situation in which we decide to use the influence

function that involves h−period returns when in fact the true model is an Ar(1). Since Gyy(l) =

ρlσ2 in that case,
Ph

l=1Gyy(l) will be equal to (1− ρh+1)σ2/(1− ρ). Therefore, Ml(θs,0) will

also be equal to −σ2. But since the asymptotic covariance of the sample average of yt
Ph

l=1 yt−l

is hσ4 under the null, the non-centrality parameter will be h−1ρ2, which is clearly below ρ2 for

any h > 1.
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GARCH tests

To keep the algebra simple, we assume once again that π = 0, that the conditional variance

has been generated according to a Garch(1,1) process and that the conditional distribution

has constant kurtosis coefficient κ. The fixed-β̄ Garch test is based on the following influence

function:

mst(σ
2, β̄) = (x2t − σ2)

X∞
j=0

β̄
j
(x2t−j − σ2)

As is well known, Bollerslev (1986) showed that a Garch(1, 1) model implies the following

Arma(1, 1) process for x2t :

(x2t − σ2) = (α+ β)(x2t−1 − σ2) + ηt − βηt−1,

where ηt is the martingale difference sequence x
2
t − σ2t . As a result,

V (x2t ) =
1− 2αβ − β2

1− (α+ β)2
V (ηt),

cov(x2t , x
2
t−1) =

[1− (α+ β)β]

1− (α+ β)2
αV (ηt),

and

cov(x2t , x
2
t−j−1) = (α+ β)cov(x2t , x

2
t−j) = (α+ β)j−1cov(x2t , x

2
t−1)

for any j ≥ 1, so that

cor(x2t , x
2
t−1) =

[1− (α+ β)β]

1− 2αβ − β2
α,

cor(x2t , x
2
t−j−1) = (α+ β)j−1cor(x2t , x

2
t−1).

But since we know that

V (x2t ) =
1− 2αβ − β2

1− κα2 − 2αβ − β2
(κ− 1)σ4

when κα2 + 2αβ + β2 < 1, it immediately follows that

V (ηt) =
1− (α+ β)2

1− κα2 − 2αβ − β2
(κ− 1)σ4.

As a result, the expected value of mst(σ
2, β̄) under the alternative will be given by

X∞
j=0

β̄
j
(α+ β)jE[(x2t − σ2)(x2t−1 − σ2)] =

α

1− β̄(α+ β)

[1− (α+ β)β]

1− κα2 − 2αβ − β2
(κ− 1)σ4.

If we expand this expression with respect to α at α = 0, we finally obtain

α

1− β̄β
(κ− 1)σ4.
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Hence, the non-centrality parameter will be

1− β̄
2

(1− β̄β)2
α2.

Specifically, for β̄ = 0 the non-centrality parameter will be α2, while for β̄ = 1 the non-centrality

parameter becomes 0 because the regressor has infinite variance while the regressand does not.

Not surprisingly, the maximum of this expression is achieved for β̄ = β, in which case its value

is
α2

1− β2
,

which is bigger than α2, the more so the closer β is to 1.

C Simulation of standardised random variables

C.1 Discrete location scale mixtures of normals

Let st denote an i.i.d. Bernoulli variate with P (st = 1) = λ. If zt|st is i.i.d. N(0, 1), then

ε∗t =
1q

1 + λ(1− λ)δ2

"
δ(st − λ) +

st + (1− st)
√
κp

λ+ (1− λ)κ
zt

#
,

where δ ∈ R and κ > 0, is a two component mixture of normals whose first two unconditional

moments are 0 and 1, respectively. The intuition is as follows. First, note that δ(st − λ) is a

shifted and scaled Bernoulli random variable with 0 mean and variance λ(1− λ)δ2. But since

st + (1− st)
√
κp

λ+ (1− λ)κ
zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to δ(st−λ), the sum of the two random variables will have variance 1+λ(1−
λ)δ2, which explains the scaling factor.

An equivalent way to simulate the same standardised random variable is as follows

ε∗t =
½

N [µ∗1(η), σ∗21 (η)] with probability λ
N [µ∗2(η), σ∗22 (η)] with probability 1− λ

where η = (δ,κ, λ)0 and

µ∗1(η) =
δ(1− λ)q

1 + λ(1− λ)δ2
,

µ∗2(η) = − δλq
1 + λ(1− λ)δ2

= − λ

1− λ
µ∗1(η),

σ∗21 (η) =
1

[1 + λ(1− λ)δ2][λ+ (1− λ)κ]
,

σ∗22 (η) =
κ

[1 + λ(1− λ)δ2][λ+ (1− λ)κ]
= κσ∗21 (η).
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Therefore, we can immediately interpret κ as the ratio of the two variances. Similarly, since

δ =
µ∗1(η)− µ∗1(η)p

λσ∗21 (η) + (1− λ)σ∗21 (η)
,

we can also interpret δ as the parameter that regulates the distance between the means of the

two underlying components. In particular, if we set δ = 0 then we will obtain a discrete scale

mixture of normals, which is always symmetric but leptokurtic.

The parameters λ, δ and κ determine the higher order moments of ε∗t through the relationship

E(ε∗jt ) = λE(ε∗jt |st = 1) + (1− λ)E(ε∗jt |st = 0),

where E(ε∗jt |st = 1) can be obtained from the usual normal expressions

E(ε∗t |st = 1) = µ∗1(η)
E(ε∗2t |st = 1) = µ∗21 (η) + σ∗21 (η)
E(ε∗3t |st = 1) = µ∗31 (η) + 3µ∗1(η)σ∗21 (η)
E(ε∗4t |st = 1) = µ∗41 (η) + 6µ∗21 (η)σ∗21 (η) + 3σ∗41 (η)
E(ε∗5t |st = 1) = µ∗51 (η) + 10µ∗31 (η)σ∗21 (η) + 15µ∗1(η)σ∗41 (η)
E(ε∗6t |st = 1) = µ∗61 (η) + 15µ∗41 (η)σ∗21 (η) + 45µ∗21 (η)σ∗41 (η) + 15σ∗61 (η)

etc. But since E(ε∗t ) = 0 and E(ε∗2t ) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coefficients will be given by

E(ε∗3t ) =
3δλ(1− λ)(1− κ)

[λ+ (1− λ)κ][1 + λ(1− λ)δ2]3/2
+

δ3(1− λ)λ(1− 2λ)
[1 + λ(1− λ)δ2]3/2

and

E(ε∗4t ) =
3[λ+ (1− λ)κ2]

[λ+ (1− λ)κ]2[1 + λ(1− λ)δ2]2
+

6δ2λ(1− λ)[(1− λ) + κλ]
[λ+ (1− λ)κ][1 + λ(1− λ)δ2]2

+
δ4λ(1− λ)[1− 3λ(1− λ)]

[1 + λ(1− λ)δ2]2
.

A useful property of finite normal mixtures is that they span the entire skewness-kurtosis frontier

E(ε∗4t ) ≥ 1 + E2(ε∗3t ) (see Stuart and Ord (1977)). In this sense, note that another way of

obtaining discrete normal mixture distributions that are symmetric is by making λ = 1
2 and

κ = 1.

Finally, note that we can also use the above expressions to generate a two component mixture

of normals with mean π and variance ω2 as

yt =

½
N(µ1, σ

2
1) with probability λ

N(µ2, σ
2
2) with probability 1− λ

with

µ1 = π + ωµ∗1(η)

µ2 = π + ωµ∗2(η)

σ21 = ωσ∗21 (η),

σ22 = ωσ∗22 (η).
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Interestingly, the expressions for κ and δ above continue to be valid if we replace µ∗1(η), µ∗2(η),

σ∗21 (η) and σ∗22 (η) by µ1, µ2, σ21 and σ22.

C.2 Generalised hyperbolic

Let ξt denote an i.i.d. Generalised Inverse Gaussian (GIG) random variable with parameters

−ν, γ and 1, or GIG(−ν, γ, 1) for short. Mencia and Sentana (2009b) show that if zt|ξt is i.i.d.
N(0, 1), then

ε∗t = c(β, ν, γ)β

∙
γξ−1t
Rν(γ)

− 1
¸
+

s
γξ−1t
Rν(γ)

p
c(β, ν, γ)zt

is a standardised Generalised Hyperbolic (GH) distribution with parameters β, ν and γ, where

c(β, ν, γ) =
−1 +

q
1 + 4β2[Dν+1(γ)− 1]

2β2[Dν+1(γ)− 1]
Rν(γ) =

Kν+1(γ)

Kν(γ)
,

Dν+1(γ) =
Kν+2(γ)Kν(γ)

Kν+1(γ)
,

and Kν(.) is the modified Bessel function of the third kind. In turn, the GH distribution is a

special case of the more general location scale mixtures of normals considered in Mencia and

Sentana (2009a), in which ξt is a positive random variable with an arbitrary distribution.

Mencia and Sentana (2009b) also provide expressions for the third and fourth moments of

the GH distribution, which in the univariate case reduce to

E(ε∗3t ) = c3(β,ν, γ)

∙
Kν+3 (γ)K

2
ν (γ)

K3
ν+1 (γ)

− 3Dν+1 (γ) + 2

¸
β3 + 3c2(β, ν, γ) [Dν+1 (γ)− 1]β

and

E(ε∗4t ) = c4(β, ν, γ)

∙
Kν+4 (γ)K

3
ν (γ)

K4
ν+1 (γ)

− 4Kν+3 (γ)K
2
ν (γ)

K3
ν+1 (γ)

+ 6Dν+1 (γ)− 3
¸
β4

+6c3(β, ν, γ)

∙
Kν+3 (γ)K

2
ν (γ)

K3
ν+1 (γ)

− 2Dν+1 (γ) + 1

¸
β2 + 3Dν+1 (γ) c

2(β, ν, γ).

C.2.1 Asymmetric and symmetric versions of the Student t

The asymmetric t distribution is nested within theGH family when γ = 0 and−∞ < ν < −2.
If we define η = −1/(2ν), then for η < 1/4 we will have that

c(β, ν, γ) =
1− 4η
2η

q
1 + 8β2η/(1− 4η)− 1

2β2
,

lim
γ→∞

Rν(γ)

γ
= lim

γ→∞
Kν+1(γ)

γKν(γ)
=

η

1− 2η ,

Dν+1(γ) =
Kν+2(γ)Kν(γ)

Kν+1(γ)
=
1− 2η
1− 4η .
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Therefore, we can easily simulate an asymmetric standardised Student t distribution as:

ε∗t = c(β, ν, γ)β

∙
(1− 2η)

ηξt
− 1
¸
+

s
(1− 2η)

ηξt

p
c(β, ν, γ)zt,

where ξt ∼ i.i.d. Gamma with mean η−1 and variance 2η−1, and zt|ξt is i.i.d. N(0, 1).
If we further assume that η < 1/8, then

Kν+3 (γ)K
2
ν (γ)

K3
ν+1 (γ)

=
(1− 2η)2

(1− 4η)(1− 6η)
Kν+4 (γ)K

3
ν (γ)

K4
ν+1 (γ)

=
(1− 2η)3

(1− 4η)(1− 6η)(1− 8η)
so the skewness and kurtosis coefficients of the asymmetric t distribution will be:

E(ε∗3t ) = 16c
3(β,ν, γ)

η2

(1− 4η)(1− 6η)β
3 + 6c2(β, ν, γ)

η

1− 4ηβ

and

E(ε∗4t ) = 12c
4(β, ν, γ)

η2(10η + 1)

(1− 4η)(1− 6η)(1− 8η)β
4

+12c3(β, ν, γ)
η(2η + 1)

(1− 4η)(1− 6η)β
2 + 3

1− 2η
1− 4η c

2(β, ν, γ).

Not surprisingly, we can obtain maximum asymmetry for a given kurtosis by letting |β|→∞. In
contrast, a standardised version of the usual symmetric Student t with 1/η degrees of freedom is

achieved when β = 0. Since limβ→0 c(β, ν, γ) = 1, in that case the coefficient of kurtosis becomes

E(ε∗4t ) = 3
1− 2η
1− 4η

for any η < 1/4.

C.2.2 Symmetric Laplace distribution

The asymmetric Laplace distribution is another special case of the GH distribution, which

is achieved when γ = 0 and ν = 1. In fact, it is a special case of the asymmetric normal-gamma

mixture, which allows ν to be any positive parameter. The symmetric Laplace distribution is

very easy to generate as

ε∗t =
p
ξtzt,

where ξt is an i.i.d. exponential (i.e. a Gamma with mean 1 and variance 1), and zt|ξt is i.i.d.
N(0, 1). As is well known, the kurtosis coefficient of a symmetric Laplace distribution is 6.
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D Econometric methods

D.1 Log-likelihood function, score vector, Hessian and information matrices

Let φ = (θ0,η)0 denote the p + r parameters of interest, which we assume variation free.

Ignoring initial conditions, the log-likelihood function of a sample of size T based on a particular

parametric distributional assumption will take the form LT (φ) =
PT

t=1 lt(φ), with lt(φ) =

dt(θ) + ln f [ε
∗
t (θ),η], where dt(θ) = −1/2 lnσ2t (θ), ε∗t (θ) = εt(θ)/σt(θ) and εt(θ) = yt − µt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If σ2t (θ) is strictly positive

and µt(θ), σ
2
t (θ) and f(ε∗,η) are differentiable, then we can use the fact that

∂dt(θ)/∂θ = −12 · σ−2t (θ) · ∂σ2t (θ)/∂θ = −Zst(θ)

and

∂ε∗t (θ)/∂θ = −σ−1t (θ) · ∂µt(θ)/∂θ−12σ−2t (θ) · ∂σ2t (θ)/∂θ · ε∗t (θ)
= −Zlt(θ)− Zst(θ)ε∗t (θ),

to show that

sθt(φ) =
∂dt(θ)

∂θ
+

∂ ln f [ε∗t (θ),η]
∂θ

= [Zlt(θ),Zst(θ)]

∙
elt(φ)
est(φ)

¸
= Zdt(θ)edt(φ),

sηt(φ) = ∂ ln f [ε∗t (θ),η] /∂η = ert(φ),

where

elt(θ,η) = −∂ ln f [ε∗t (θ),η] /∂ε∗,
est(θ,η) = − {1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η] /∂ε∗} ,

depend on the specific distributional assumption.

Let ht(φ) denote the Hessian function ∂st(φ)/∂φ0 = ∂2lt(φ)/∂φ∂φ
0. Assuming twice differ-

entiability of the different functions involved, we will have

hθθt(φ) =
∂Zlt(θ)

∂θ0
elt(φ) +

∂Zst(θ)

∂θ0
est(φ) + Zlt(θ)

∂elt(φ)

∂θ0
+ Zst(θ)

∂est(φ)

∂θ0
(D7)

hθηt(φ) = Zlt(θ)
∂elt(φ)

∂η0
+ Zst(θ)

∂est(φ)

∂η0
(D8)

hηηt(φ) = ∂2 ln f [ε∗t (θ),η] /∂η∂η
0,
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where

∂Zlt(θ)/∂θ
0 = −12 · σ−3t (θ) · ∂µt(θ)/∂θ0 − σ−1t (θ) · ∂2µ2t (θ)/∂θ∂θ0,

∂Zst(θ)/∂θ
0 = −12 · σ−4t (θ) · ∂σ2t (θ)/∂θ0 − 1

2 · σ−2t (θ) · ∂2σ2t (θ)/∂θ∂θ0,
∂elt(φ)/∂θ

0 = ∂2 ln f [ε∗t (θ),η] /∂ε
∗∂ε∗ · Z0lt(θ) + ∂2 ln f [ε∗t (θ),η] /∂ε

∗∂ε∗ · ε∗t (θ) · Z0st(θ)
∂est(φ)/∂θ

0 = {∂ ln f [ε∗t (θ),η] /∂ε∗ + ∂2 ln f [ε∗t (θ),η] /∂ε
∗∂ε∗ · ε∗t (θ)}Z0lt(θ)

+{∂ ln f [ε∗t (θ),η] /∂ε∗ · ε∗t (θ) + ∂2 ln f [ε∗t (θ),η] /∂ε
∗∂ε∗ · ε2∗t (θ)} · Z0st(θ)

and ∂2 ln f(ε∗, η)/∂ε∗∂ε∗, ∂2 ln f(ε∗, η)/∂ε∗∂η0 and ∂ ln f(ε∗, η)/∂η∂η0 depend on the specific

distribution assumed for estimation purposes (see FSC for the Student t).

Given correct specification, et(φ) = [e0dt(φ), ert(φ)]
0 evaluated at the true parameter values

is an iid sequence, and therefore, the score vector st(φ) will be a vector martingale difference

sequence. Then, the results in Crowder (1976) imply that, under suitable regularity conditions,

the asymptotic distribution of the feasible ML estimator will be
√
T (φT −φ0)→ N [0, I−1(φ0)],

where I(φ0) = E[It(φ0)|φ0], where

It(φ) = −E [ht(φ)|zt, It−1;φ] = V [st(φ)|zt, It−1;φ] = Zt(θ)M(η)Z0t(θ),

Zt(θ) =

µ
Zdt(θ) 0
0 Iq

¶
=

µ
Zlt(θ) Zst(θ) 0
0 0 Iq

¶
,

and

M(η) =

⎛⎝ Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M0

lr(η) M0
sr(η) Mrr(η)

⎞⎠ .

In the Student t case, this matrix is simply

M(η) =

⎛⎜⎜⎝
ν(ν+1)

(ν−2)(ν+3) 0 0

0 (ν+1)
(ν+3) − 6ν2

(ν−2)(ν+1)(ν+3)
0 − 6ν2

(ν−2)(ν+1)(ν+3)
ν4

4

£
ψ0
¡
ν
2

¢− ψ0
¡
ν+1
2

¢¤− ν4[ν2+(ν−4)−8]
2(ν−2)2(ν+1)(ν+3)

⎞⎟⎟⎠ .

where ψ(.) is the di-gamma function (see Abramowitz and Stegun (1964)), which under normality

reduces to

M(η) =

⎛⎝ 1 0 0
0 2 0
0 0 3/2

⎞⎠ .

D.2 Gaussian pseudo maximum likelihood estimators

Let θ̃T = argmaxθ LT (θ,0) denote the Gaussian pseudo-ML (PML) estimator of the con-

ditional mean and variance parameters θ in which η is set to zero. As we mentioned in the

introduction, θ̃T remains root-T consistent for θ0 under correct specification of µt(θ) and σ
2
t (θ)
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even though the conditional distribution of ε∗t |zt, It−1;φ0 is not Gaussian, provided that it has
bounded fourth moments. Proposition 2 in Fiorentini and Sentana (2007) derives the asymptotic

distribution of the pseudo-ML estimator of θ when ε∗t |zt, It−1;φ0 is i.i.d.:

Proposition 9 If ε∗t |zt, It−1;φ0 is i.i.d. D(0,1,η0) with κ0 <∞, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satisfied, then

√
T (θ̃T − θ0)→ N [0, C(φ0)], where

C(φ) = A−1(φ)B(φ)A−1(φ),
A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ;0)| zt, It−1;φ] = Zdt(θ)K(0)Z0dt(θ),
B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ;0)| zt, It−1;φ] = Zdt(θ)K(κ)Z0dt(θ),

and K (ϕ,κ)=V [edt(θ,0)| zt, It−1;φ]=
∙

1 ϕ(η)
ϕ(η) κ(η)− 1

¸
, (D9)

which only depends on η through the population coefficients of asymmetry and kurtosis

ϕ(η) = E(ε∗3t |η). (D10)

κ(η) = E(ε∗4t |η). (D11)

Given that ϕ(η) = 0 and κ = 2/(ν − 4) for the Student t distribution with ν degrees of

freedom, it trivially follows that in that case Bt(φ) reduces to
1

σ2t (θ)

∂µt(θ)

∂θ
Σ−1t (θ)

∂µt(θ)

∂θ0
+

ν − 1
2(ν − 4)

1

σ4t (θ)

∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ0
.

D.3 Semiparametric estimators of θ

Gonzalez-Rivera and Drost (1999) obtain the semiparametric efficient score and the corre-

sponding efficiency bound for univariate models:

Proposition 10 If ε∗t |zt, It−1;θ0,%0 is i.i.d. (1, 0) with density function f(ε∗t ;%), where % are
some shape parameters and % = 0 denotes normality, such that both its Fisher information
matrix for location and scale

Mdd (%) = V [edt(θ,%)|zt, It−1;θ,%]

= V

½∙
elt(θ,%)
est(θ,%)

¸¯̄̄̄
θ,%

¾
= V

½∙ −∂ ln f [ε∗t (θ);%]/∂ε∗
−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗t (θ)}

¸¯̄̄̄
θ,%

¾
and the matrix of third and fourth order central moments

K (%) = V [edt(θ,0)| zt, It−1;θ,%] (D12)

are bounded, then the semiparametric efficient score will be given by:

Zdt(θ0,%0)edt(θ0,%0)− Zd(θ0,%0)
£
edt(θ0,%0)−K (0)K−1(ϕ, κ)edt(θ0,0)

¤
, (D13)

while the semiparametric efficiency bound is

S(φ0) = Iθθ(θ0,%0)− Zd(θ0,%0)
£Mdd (%0)−K (0)K1(ϕ, κ)K (0)

¤
Z0d(θ0,%0), (D14)

where + denotes Moore-Penrose inverses, and Iθθ(θ,%) = E
£
Zdt(θ)Mdd(%)Z

0
dt(θ)|θ,%

¤
.
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In practice, f [ε∗t (θ);%] has to be replaced by a non-parametric density estimator, which is

typically obtained by kernel methods.

Hodgson and Vorkink (2001), Hafner and Rombouts (2007) and other authors have suggested

semi-parametric estimators of θ which limit the admissible distributions of ε∗t |zt, It−1;φ0 to the
class of symmetric ones. Proposition 7 in Fiorentini and Sentana (2007) provides the resulting

elliptically symmetric semiparametric efficient score and the corresponding efficiency bound:

Proposition 11 When ε∗t |zt, It−1,φ0 is i.i.d. s(0,1,%0) with 1 < κ0 <∞, the elliptically sym-
metric semiparametric efficient score is given by:

s̊θt(φ0)=Zdt(θ0)edt(φ0)−Ws(φ0)

½
− [1+εt(θ0)∂ ln f [ε

∗
t (θ);%]/∂ε

∗]− 2

κ0 − 1
£
ε2t (θ0)− 1

¤¾
,

(D15)
where

Ws(φ0) = Zd(φ0)

µ
0
1

¶
= E[Zdt(θ0)|φ0]

µ
0
1

¶
= E

½
1

2σ2t (θ)

∂σ2t (θ)

∂θ

¯̄̄̄
φ0

¾
, (D16)

while the elliptically symmetric semiparametric efficiency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

∙
Mss(%0)−

4

κ0 − 1
¸
. (D17)

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from the density

of ε∗t that imposes symmetry. The simplest way to do this is by averaging the non-parametric

density estimators at ε∗t and −ε∗t . Alternatively, one can estimate the common density of ±ε∗t
from the density of the Box-Cox transformation k−1|ε∗t |k − 1 for some k ≥ 0.

D.4 Student t-based pseudo maximum likelihood estimators

Let θ̃T = argmaxθ LT (θ,η) denote the t-based pseudo-ML (t-PML) estimator of the condi-

tional mean and variance parameters θ obtained by assuming that the conditional distribution

is t(0, 1, η). Proposition 13 in Fiorentini and Sentana (2007) shows that this estimator is as-

ymptotically equivalent to the Gaussian PML estimator when the conditional distribution is

platykurtic. They also show that if the conditional mean and variance can be parametrised as

in Linton (1993) and Newey and Steigerwald (1997), then some of the reparametrised mean and

variance parameters will be consistently estimated even if the true conditional distribution is

not a Student t. In our context, the robustness of the Student t serial correlation tests under

conditional symmetry follows from the fact that the only parameter that is inconsistently esti-

mated is ω in those circumstances. More generally, its robustness under possibly asymmetric

distributions derives from the fact that we can reparametrise the mean of (1) as δ
√
ω + ρyt−1.

Therefore, the t-based ML estimator of ρ continues to be consistent even if the estimators of
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ω and π are inconsistent. The argument for the α is slightly different, because a Student log-

likelihood function can only estimate α/ω consistently in those circumstances. Nevertheless,

given that α is 0 under the null, the t-based ML estimator of α continues to be consistent even

if the estimators of ω and π are inconsistent.

D.5 Discrete mixtures of normals based pseudo maximum likelihood estima-
tors

The EM algorithm discussed by Dempster, Laird and Rubin, D. (1977) allows us to obtain

initial values as close to the optimum as desired. The recursions are as follows:

λ̂
(n

=
1

T

XT

t=1
w(yt;φ

(n−1)

µ̂
(n
1 =

1

λ̂
(n

1

T

TX
t=1

ytw(yt;φ
(n−1),

µ̂
(n
2 =

1

1− λ̂
(n

1

T

TX
t=1

yt[1− w(yt;φ
(n−1)],

σ̂
2(n
1 =

1

λ̂
(n

1

T

TX
t=1

y2tw(yt;φ
(n−1)−

³
µ̂
(n
1

´2
,

σ̂
2(n
2 =

1

1− λ̂
(n

1

T

TX
t=1

y2t [1− w(yt;φ
(n−1)]−

³
µ̂
(n
2

´2
where

w(yt;φ) =

λ
σ1
φ
³
yt−µ1
σ1

´
λ
σ1
φ
³
yt−µ1
σ1

´
+ 1−λ

σ2
φ
³
yt−µ2
σ2

´
=

λ
σ∗1(η)

φ
h
ε∗t (θs)−µ∗1(η)

σ∗1(η)

i
λ

σ∗1(η)
φ
h
ε∗t (θs)−µ∗1(η)

σ∗1(η)

i
+ 1−λ

σ∗2(η)
φ
h
ε∗t (θs)−µ∗2(η)

σ∗2(η)

i = w[�∗t (θs);η]

and φ(.) denotes the standard normal density.

From those recursions it is easy to check that

π̂(n = µ̂
(n
1 λ̂

(n
+ µ̂

(n
2 (1− λ̂

(n
) =

1

T

XT

t=1
yt,

σ̂2(n = [(µ̂
(n
1 )

2 + σ̂
2(n
1 ]λ̂

(n
+ [(µ̂

(n
2 )

2 + σ̂
2(n
2 ](1− λ̂

(n
)− (π̂(n)2 = 1

T

XT

t=1
y2t −

µ
1

T

XT

t=1
yt

¶2
,

for all n regardless of the values of φ(n−1. This means that λ̂
(n
, κ̂(n = σ̂

2(n
2 /σ̂

2(n
1 and

δ̂
(n
=

µ̂
(n
1 − µ̂

(n
2q

λ̂
(n
σ̂
2(n
1 + (1− λ̂

(n
)σ̂
2(n
2

will yield the EM recursions for a mixture model parametrised in terms of π, ω2 and λ, δ and

κ, which are the parameters of the standardised version in Appendix C.1.
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Since the ML estimators constitute the fixed point of the EM recursions, (i.e. φ = φ(∞),

another implication of the above result is that π̂ and ω̂2 coincide with the Gaussian PML

estimators. As a result, we can maximise the log-likelihood function with respect to λ, δ and

κ keeping π̂ and σ̂2 fixed at their Gaussian pseudo ML values. Interestingly, this somewhat

surprising result will continue to be true even in a complete log-likelihood situation in which we

would observe not only yt but also st. In addition, it is straightforward to prove that the same

result holds for finite mixtures of normals with more than two components.
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Table 1

Test power

(a) Ar(1) tests. DGP: Student t6 (ρ=2/
√
720, α=β=0)

Normal Student DMN SSP SP
Rejection rate 0.495 0.563 0.558 0.549 0.539
Size adjusted 0.489 0.552 0.547 0.536 0.529

(b) Ar(1) tests. DGP: DMN(ϕ=-.5,κ=6,λ=.05) (ρ=2/
√
720, α=β=0)

Normal Student DMN SSP SP
Rejection rate 0.497 0.551 0.558 0.545 0.539
Size adjusted 0.512 0.561 0.570 0.559 0.548

(c) Arch(1) tests. DGP: Student t6 (ρ=0, α=2/
√
720,β=0)

Normal Student DMN SSP SP
Rejection rate 0.374 0.442 0.407 0.376 0.351
Size adjusted 0.423 0.458 0.432 0.394 0.362

(d) Arch(1) tests. DGP: DMN(ϕ=-.5,κ=6,λ=.05) (ρ=0, α=2/
√
720,β=0)

Normal Student DMN SSP SP
Rejection rate 0.357 0.499 0.496 0.445 0.427
Size adjusted 0.411 0.516 0.510 0.450 0.434



Table 2

Descriptive statistics

Portfolio Means Std.dev. Skewness (ϕ) Kurtosis (κ)

Market .485 4.307 -.599∗ 5.245∗

SMB .189 2.969 .573 9.441∗

HML .397 2.718 .078 5.797∗

Notes: Sample: January 1953-December 2008. Definitions: Market: Value-weighted portfolio of all
NYSE, AMEX and NASDAQ stocks; SMB: Size factor; HML: Value factor. The symbol * means statis-
tically different from its value under normality at the 5% level.



Table 3

Serial correlation tests (p-values, %)

Ar(1)
Normal Student SSP DMN SP

Market 1.63% 7.89% 7.78% 31.10% 26.59%
SMB 11.60% 0.13% 0.02% 0.03% 0.01%
HML 0.03% 0.01% 0.01% 0.03% 0.03%

Ar(12)
Normal Student SSP DMN SP

Market 22.14% 29.18% 30.42% 96.45% 87.73%
SMB 4.61% 0.11% 0.12% 0.02% 0.27%
HML 3.17% 1.25% 1.07% 0.49% 4.37%

Notes: Sample: January 1953-December 2008. Definitions: Market: Value-weighted portfolio of all
NYSE, AMEX and NASDAQ stocks; SMB: Size factor; HML: Value factor. PML refers to the Gaussian-
based ML estimators, Student to the t-based ones, DMN to the ones based on a two component mixture
of normals, SSP to the symmetric semiparametric estimators and SP to the general semiparametric
estimators.



Table 4

Conditional heteroskedasticity tests (p-values, %)

Arch(1)
PML Student SSP DMN SP

Market 0.06% 0.00% 0.00% 0.09% 0.03%
SMB 0.00% 0.00% 0.12% 0.00% 0.43%
HML 0.00% 0.00% 0.00% 0.00% 0.00%

Garch(1,1)
PML Student SSP DMN SP

Market 0.14% 0.00% 0.00% 0.00% 0.00%
SMB 0.00% 0.00% 0.00% 0.00% 0.00%
HML 0.00% 0.00% 0.00% 0.00% 0.00%

Notes: Sample: January 1953-December 2008. Definitions: Market: Value-weighted portfolio of all
NYSE, AMEX and NASDAQ stocks; SMB: Size factor; HML: Value factor. PML refers to the Gaussian-
based ML estimators, Student to the t-based ones, DMN to the ones based on a two component mixture
of normals, SSP to the symmetric semiparametric estimators and SP to the general semiparametric
estimators.
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Figure 1: Tests of predictability in mean
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(a) AR alternatives. Gaussian DGP

 

 

Figure 3: Power of mean dependence tests at 5% level against local alternatives
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(b) AR(1) alternatives. Student t DGPs
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(c) AR(1) alternatives. Normal mixture DGPs
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Figure 4: Tests of predictability in variance
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(a) GARCH(1,1) alternatives. Gaussian DGP

 

 

Figure 5: Power of variance dependence tests at 5% level against local alternatives
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(b) ARCH(1) alternatives. Student t DGPs
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(c) ARCH(1) alternatives. Normal mixture DGPs
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