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Abstract

We study the finite sample properties of the Fourier estimator of integrated
volatility under market microstructure noise. We derive an analytic expression for
the bias and the mean squared error of the contaminated estimator. These estimates
can be practically used to design optimal MSE-based estimators, which are very
robust and efficient in the presence of noise. Moreover an empirical analysis based
on a simulation study and on high-frequency logarithmic prices of the Italian stock
index futures (FIB30) validates the theoretical results.
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1 Introduction

In the recent years the literature devoted to the model free measurement of volatility has
received strong impulse by the availability of high frequency financial data (see the re-
view paper by [Andersen, Bollerslev and Diebold, 2002]). Nevertheless the efficiency of all
the methodologies proposed in estimating accurately the volatility builds on the observ-
ability of the true price process, while observed asset prices are contaminated by market
microstructure effects, such as price discreteness, separate trading prices for buyers and
sellers and other contaminations; as a consequence observed asset prices diverge from their
efficient values (see, for instance, [Roll, 1984, Glosten and Milgrom, 1985, Harris, 1991],
[O’Hara, 1995]).

The study of the implications of market microstructure noise for integrated volatil-
ity estimators has largely focused on the realized volatility, an estimator of the inte-
grated (e.g. daily) volatility as the sum of intradaily squared returns, among others see
[Zhang and al., 2005, Aı̈t-Sahalia, Mykland and Zhang, 2005a, Bandi and Russell, 2005a,
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Bandi and Russell, 2006a]. The theoretical justification for the use of this estimator is a
classical result in semi-martingale process theory, i.e. the quadratic variation theorem,
which essentially goes back to Wiener. In fact in the semi-martingale paradigm, when
the asset prices are observed without errors, the realized volatility is a consistent esti-
mator of the integrated volatility of the underlying price process and higher sampling
frequencies over a fixed period of time result in more precise estimates of the integrated
volatility of the price process. If this was the case, then the use of the highest possible
frequency (tick by tick data) should give a precise identification of the volatility. Never-
theless, in the presence of microstructure noise the realized volatility estimator fails to
converge to the integrated volatility of the underlying price process. This diverging behav-
ior has been empirically observed by [Andersen and al., 1999] and theoretically analyzed
in [Bandi and Russell, 2005a, Zhang and al., 2005]. Therefore, some methods have been
proposed to correct the realized volatility estimator for the effect of market microstructure
noise, in order to obtain unbiased estimators of the true integrated volatility [Zhou, 1996,
Andersen, Bollerslev, Diebold and Ebens, 2001, Zhang and al., 2005, Barndorff-Nielsen and al., 2006a,
Hansen and Lunde, 2006].

In this paper we will focus on the Fourier estimator of integrated volatility, which is
obtained as a particular case of the estimator proposed in [Malliavin and Mancino, 2002].
The Fourier methodology allows to reconstruct the instantaneous volatility as a series ex-
pansion with coefficients gathered from the Fourier coefficients of the price variation. The
consistency in probability uniformly in time and the asymptotic properties of the Fourier
estimator of instantaneous volatility have been proved in [Malliavin and Mancino, 2005]
in the absence of microstructure noise. Moreover the efficiency of the Fourier method
to compute the integrated volatility has been analyzed in comparison with other es-
timators in [Barucci and Renò, 2001, Barucci and Renò, 2002, Hansen and Lunde, 2005,
Kanatani, 2004], when the microstructure noise is ignored.

The aim of this paper is to study the robustness of the Fourier estimator of inte-
grated volatility towards microstructure noise. We begin our analysis with a simple price
formation mechanism which is typical of bid-ask bounce effects [Roll, 1984]. The loga-
rithm of the observed price process is the sum of the log-price process in equilibrium and
a component of microstructure noise which is represented by independent identically dis-
tributed random variables (MA(1) model in the sequel). In this setting we study the finite
sample properties for the Fourier volatility estimator both through theoretical analysis
and by simulation results. We recall that in this regard [Nielsen and Frederiksen, 2006]
make an empirical comparison, through Monte Carlo simulations and using high fre-
quency market data, between some estimators of integrated volatility: the realized volatil-
ity, the Fourier estimator, the wavelet estimator and some bias correction methods,
namely the realized bipower variation by [Barndorff-Nielsen and Shephard, 2004], the
kernel-based estimator by [Zhou, 1996] and the related unbiased estimator proposed by
[Hansen and Lunde, 2006]. Their empirical analysis shows that the Fourier estimator is
superior to the realized volatility and the wavelet estimator and, even compared to the
bias correcting methods for microstructure noise, the Fourier estimator provides smaller
root mean squared error, while having only slightly higher bias. Nevertheless their analy-
sis is purely empirical and a precise treatment of market microstructure noise effects on
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the Fourier estimator of the efficient price’s volatility is needed. Therefore in this paper
we take a first step towards the understanding of the Fourier estimator’s properties when
uncorrelated microstructure noises are included. More realistic microstructure noise de-
pendence has been studied in [Hansen and Lunde, 2006] for the realized volatility estima-
tor. However, the empirical work of [Hansen and Lunde, 2006] suggests this independence
assumption is not too damaging statistically when we analyze data in tickly traded stocks
recorded approximately every minute.

We derive the explicit analytical expression of the bias of the Fourier estimator for a
given sample size n and a given number of Fourier coefficients N included in the estimation
and we prove that the bias of the Fourier estimator converges to zero, for n,N increasing
to +∞, under the condition that N2

n
goes to 0. Therefore, even if we do not proceed to

any bias correction of the estimator, a suitable cutting of the highest frequencies makes
the finite sample bias negligible. Even more strikingly, we prove this result holds both in
the case of independent microstructure noise and in the case where the noise is correlated
with the efficient returns. We note that usually a bias correction is accompanied by a
larger asymptotic variance. In the present case, we obtain the analytical expression of
the conditional (on the underlying volatility path) mean squared error (MSE) of the
contaminated volatility estimator as a function of the sampling frequency and the number
of Fourier coefficients. This expression shows that the MSE does not diverge for n,N
increasing to +∞, under the condition that N2

n
goes to 0. These two results enlighten a

peculiar feature of the Fourier estimator: while the MSE of the realized volatility estimator
under microstructure noise diverges as the number n of observations increases, the MSE of
the Fourier estimator is substantially unaffected by the presence of microstructure noise
by choosing in a suitable way the number of Fourier coefficients to be included in the
estimation, as indicated explicitly by the MSE computation.

We emphasize that the Fourier estimator needs no correction in order to be statisti-
cally efficient and robust to some kind of market frictions at the same time. This result is
due to the following properties of the Fourier estimator: on one side it uses all available
data by integration, therefore incorporating not only the squared increments of the prices
but also the auto-covariances of all orders along the time window; on the other side the
high-frequency noise or short-run noise is ignored by the Fourier estimator by cutting the
highest frequencies in the construction of the estimator. In other words, when efficiently
implemented, the Fourier estimator uses as much as possible of the available sample path
without being excessively biased due to the impact of market frictions.

The contribution of various order auto-covariances has early been considered by
[Zhou, 1996, Corsi et al., 2001] and very recently used to correct the bias of the realized
variance type estimators in the presence of microstructure noise. In particular we refer to
the subsampled estimator by [Zhang and al., 2005, Aı̈t-Sahalia, Mykland and Zhang, 2005b]
and the realized (subsampled) kernels by [Barndorff-Nielsen and al., 2006a, Barndorff-Nielsen and al., 20
Nevertheless the Fourier estimator works differently, since the Dirichlet (or the Fejer) ker-
nel appearing in the Fourier estimator depends on both the number of frequencies N and
the number of observations: this fact has a great number of important implications in
terms of the efficiency of the estimator. Theorems 4.1 and 5.1 provide the tools to opti-
mize the finite sample performance of the Fourier estimator in terms of the selection of
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the number of frequencies by minimizing the mean squared error, for a given number of
intra-daily observations (see [Bandi and Russell, 2006b] for a similar approach). We note
that in the case of the realized kernels the optimal selection procedure is implemented
with respect to the bandwidth, given the sample size.

Our theoretical results are confirmed by a simulation study. We simulate discrete data
from a continuous time stochastic volatility model with microstructure contaminations as
in [Nielsen and Frederiksen, 2006]. Consistently with the theoretical results, we show that
when N = n/2 the Fourier estimator behaves like the realized volatility estimator and it
does indeed explode as the sampling interval goes to zero. Nevertheless, both bias and MSE
can be strongly reduced by choosing N conveniently and as N2

n
→ 0 the Fourier estimator

turns out to be unbiased and the MSE converges to a small positive constant. Our analysis
suggests to use quote-to-quote returns and try to minimize MSE as a function of the
cutting frequency Ncut. In this way, we find optimal sampling at higher frequencies than
those obtained with realized volatility. This is due to the fact that the Fourier estimator
can utilize more information in the data, without being affected by a severe bias, simply
choosing the lower frequencies of the Fourier estimator. By letting N free to vary, we show
that it may be convenient to choose N < n

2
, where n

2
is the Nyquist frequency, especially

for large n. We provide an easily implementable procedure to select numerically a value
for (n,N), which optimizes the Fourier estimator’s finite sample performance in terms
of its bias and MSE. The optimal MSE-based estimator turns out to be very attractive,
even in comparison with methods specifically designed to handle market microstructure
contaminations. More specifically, the Fourier estimator is competitive in terms of MSE
for high sampling frequencies up to 30 sec, while having only a slightly higher bias. This
procedure is then applied to high-frequency intraday returns on the Italian stock index
futures (FIB30), where the choice of a suitable Ncut allows to render the Fourier estimator
invariant to short-run noise introduced by market microstructure effects, with consequent
efficiency gains. Moreover, our simulations indicate that the RV estimator is more biased
than the Fourier estimator in the presence of market microstructure noise and, therefore,
that the actual volatility might be higher on average than predicted by the much used
realized volatility, as already noticed in [Nielsen and Frederiksen, 2006].

The paper is organized as follows. In section 2 we describe the assumptions for the
underlying price formation mechanism. In section 3 we recall the definition of the Fourier
estimator of the (integrated) volatility. Sections 4 and 5 contain the computation of the
bias and the MSE as functions of the sampling frequency and the number of Fourier
coefficients included in the construction of the estimator. Section 6 extends the analysis
of the bias of the Fourier estimator to more general price formation rules. In section 7,
we test our theoretical findings by means of a Monte Carlo simulation, while in Section 8
we apply our results to the optimal sampling of quote-to-quote FIB30 logarithmic prices.
Section 9 concludes. The proofs are contained in the Appendix.
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2 The model of prices with microstructure effects

We suppose that the logarithm of the observed price process is given by

p̃(t) = p(t) + η(t) (1)

where p(t) is the efficient log-price process and η(t) is the microstructure noise. We can
think of p(t) as the log-price in equilibrium, that is the price that would prevail in the
absence of market microstructure frictions. The econometrician does not observe the re-
turns of the true return series, but the returns contaminated by market microstructure
effects. Therefore an estimator of the integrated volatility should be constructed using the
contaminated returns.

We consider a fixed time period (e.g. a trading day), say [0, T ]. Suppose that the
process is observed at a discrete unevenly spaced grid {0 = t0,n ≤ t1,n ≤ · · · ≤ tkn,n ≤ T}
for any n ≥ 1. We make the following assumptions:

A.I p(t) is a continuous semi-martingale satisfying the stochastic differential equation

dp(t) = σ(t) dW (t) + b(t) dt

where W is a Brownian motion on a filtered probability space (Ω, (Ft)t∈[0,T ], P ), σ and b
are adapted stochastic processes such that

E[

∫ T

0

σ4(t)dt] < ∞ , E[

∫ T

0

b2(t)dt] < ∞.

A.II The random shocks η(tj,n), for 0 ≤ j ≤ kn and for all n, are independent and
identically distributed with mean zero and bounded fourth moment.

A.III The true return process δj,n(p) := p(tj,n) − p(tj−1,n) is independent of η(tj,n)
for any j, n.

To simplify the notation, in the sequel we will write δj(p) and ηj instead of δj,n(p)
and η(tj,n).

Remark 2.1 A structural model like (1), where the efficient price is considered a con-
tinuous process and the noise is observed on a fixed grid of prices, has been proposed in
[Aı̈t-Sahalia, Mykland and Zhang, 2005a] and [Bandi and Russell, 2005a]. It is coherent
with the model free volatility estimation method introduced in [Malliavin and Mancino, 2002],
but here we introduce explicitly microstructure effects. The instantaneous volatility process
is allowed to display jumps, diurnal effects, high persistence, non-stationarities and lever-
age effects.

Remark 2.2 In general the noise return moments may depend on the sampling frequency
(see [Hansen and Lunde, 2004, Bandi and Russell, 2005b]). Here we consider the simpli-
fied case where the microstructure noise displays an MA(1) structure with a negative
first order autocorrelation. The MA(1) model is typically justified by bid-ask bounce ef-
fects [Roll, 1984]. It is known to be a realistic approximation in decentralized markets
where traders arrive in a random fashion with idiosyncratic price setting behavior, the for-
eign exchange market being a valid example [Bai and al., 2005]. See [Zhang and al., 2005,
Bandi and Russell, 2006a, Hansen and Lunde, 2006] for additional discussions.
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Remark 2.3 The hypothesis that the ηj’s are independent of the increments δj(p) is dis-
cussed in [Hansen and Lunde, 2006]. Their empirical work suggests that the independence
assumption is not too damaging statistically when we analyze data in tickly traded stocks
recorded every minute. Therefore our analysis is mainly developed in this setting, but we
examine the robustness of the Fourier estimator under more general microstructure noise
dependence in section 6.

3 Fourier method for volatility estimation

The Fourier estimator of spot volatility was introduced in [Malliavin and Mancino, 2002].
The methodology has been generalized in [Malliavin and Mancino, 2005] where the fol-
lowing result is proved: the volatility function is computed by establishing a connection
between the Fourier transform of the price process and the Fourier transform of the volatil-
ity process. This result is rigorously stated in the following theorem. We note that by a
change of the origin of time and rescaling the unit of time we can always reduce ourselves
to the case where the time window is [0, 2π].

Theorem 3.1 Consider a semimartingale p satisfying assumption A.I. Denote the Fourier
transform of dp by

F(dp)(k) :=
1

2π

∫
]0,2π[

exp(−ikt) dp(t), (2)

and the Bohr convolution product between two functions Φ, Ψ defined on the integers by

(Φ ∗B Ψ)(k) := lim
N→∞

1

2N + 1

N∑
s=−N

Φ(s)Ψ(k − s). (3)

Then we have

1

2π
F(σ2)(k) = (F(dp) ∗B F(dp))(k), for all k ∈ Z. (4)

The equality (4) is true in probability, which means that the limit appearing in the r.h.s
of (3) exists in probability.

For simplicity, we assume b = 0 because [Malliavin and Mancino, 2005] prove that the
drift term gives zero contribution to the volatility estimation. In particular, by considering
the case k = 0 in the formula (4), we obtain that the integrated volatility over the time
interval [0, 2π] can be computed as∫ 2π

0

σ2(t)dt = (2π)2 (F(dp) ∗B F(dp))(0). (5)

In the sequel, we assume that the price process p is observed at a discrete unevenly spaced
grid {0 = t0,n ≤ t1,n ≤ · · · ≤ tkn,n ≤ 2π} for any n ≥ 1, where for simplicity we can take
kn = n, with the only condition that ρ(n) := max0≤h≤n |th+1,n − th,n| goes to zero as
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n → ∞. From (5) the finite sample Fourier estimator of the integrated volatility over
[0, 2π] is defined as follows

(2π)2

2N + 1

N∑
s=−N

F(dp)n(s)F(dp)n(−s) (6)

F(dp)n(s) :=
1

2π

n∑
j=1

exp(−istj)δj(p). (7)

The consistency in probability uniformly in time of the Fourier estimator of the instan-
taneous volatility is proved in the absence of microstructure noise under assumption A.I
in [Malliavin and Mancino, 2005] (Theorem 3.2). In particular the following convergence
in probability holds

lim
n,N→∞

1

2N + 1

∑
|s|≤N

n∑
j=1

n∑
j′=1

eis(tj−t′j)δj(p)δj′(p) =

∫ 2π

0

σ2(t)dt.

We emphasize two different features of the Fourier estimation method: the first one is that
the Fourier estimator uses all available data by integration, thus incorporating not only
the squared increments of the prices but also the products of disjoint increments along
the time window (i.e. the auto-covariances of all orders), the second one is the convolution
product in (6) which weights the cross-products at any given frequency.

In [Barucci and Renò, 2001, Barucci and Renò, 2002, Hansen and Lunde, 2005] the
efficiency of the Fourier estimator of integrated volatility has been analyzed in comparison
with other estimators only in the absence of microstructure.

In this paper we are interested in the estimation of the integrated volatility, given the
observations of the contaminated process p̃ defined in (1). In the sequel we will denote

σ̂2
n,N :=

(2π)2

2N + 1

N∑
s=−N

F(dp̃)n(s)F(dp̃)n(−s), (8)

which we call the Fourier estimator. We note that, taking (7) into account, the Fourier
estimator (8) can be re-written as

σ̂2
n,N :=

n∑
j=1

n∑
j′=1

DN(tj − t′j)δj(p̃)δj′(p̃), (9)

where DN(t) denotes the rescaled Dirichlet kernel defined by (see e.g. [Malliavin, 1995])

DN(t) :=
1

2N + 1

∑
|s|≤N

eist =
1

2N + 1

sin[(N + 1
2
)t]

sin t
2

. (10)
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Remark 3.2 In the numerical applications we will also consider the finite sample prop-
erties of the following version of the Fourier estimator, simply obtained by weighting the
convolution product with the La Vallee Poussin kernel:

Σ̂2
n,N :=

(2π)2

N + 1

N∑
s=−N

(
1 − |s|

N

)
F(dp̃)n(s)F(dp̃)n(−s). (11)

The mathematical results which will be proved with respect to the Dirichlet kernel in the
next two sections, can be obtained in the same way in this context, as the Fourier estimator
(11) can be re-written as

Σ̂2
n,N :=

n∑
j=1

n∑
j′=1

FN(tj − t′j)δj(p̃)δj′(p̃),

where FN(t) = sin2(Nt)
(Nt)2

is the Fejer kernel. Empirically we will see to what extent this
modification improves the behavior of the Fourier estimator for very high observation
frequencies.

The contribution of various order auto-covariances has early been considered by
[Zhou, 1996] and recently used to correct the bias of the realized variance type estimators
in the presence of microstructure noise. In particular we refer to the subsampled estimator
by [Zhang and al., 2005] and the realized (subsampled) kernels by [Barndorff-Nielsen and al., 2006a,
Barndorff-Nielsen and al., 2006b]. Nevertheless the Fourier estimator works differently. In
order to illustrate this point we set in the hypothesis of [Barndorff-Nielsen and al., 2006b],
where the time gap τ between two observations is constant and H is the bandwidth, then
the realized kernel correction to realized variance estimator is

H∑
h=1

k(
h − 1

H
) {

n∑
j=1

δj(p̃)δj−h(p̃) +
n∑

j=1

δj(p̃)δj+h(p̃)}.

The weight k(x) is a function of the bandwidth only. On the other hand, by exploiting the
same data set as for the above realized kernel estimator, the Fourier estimator correction
to realized variance is

H∑
h=1

DN(τh) {
n∑

j=1

δj(p̃)δj−h(p̃) +
n∑

j=1

δj(p̃)δj+h(p̃)}.

Thus the Dirichlet kernel in Fourier estimator depends on the number of frequencies N ,
besides the delay between two observations. Even though this seems to leave many de-
grees of freedom, we will see in the next sections that a single optimization over the
number of frequencies N renders the Fourier estimator very efficient even in presence of
microstructure noise. Theorems 4.1 and 5.1 provide a way to optimize the finite sample
performance of the Fourier estimator as a function of the number of frequencies by the
minimization of the mean squared error (MSE), for a given number of intra-daily obser-
vations, with a similar approach as in [Bandi and Russell, 2006b]. We note that for the
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realized kernels estimator in [Bandi and Russell, 2006b, Barndorff-Nielsen and al., 2006a]
the optimization is performed with respect to the bandwidth H, given the sample size.

In the following sections we derive analytical formulae of the bias and the MSE of
the Fourier estimator under bid-ask microstructure noise. This computation will serve as
a basis for the optimal choice of the cutting frequency for a given data sampling interval
when considering financial return series data.

4 Bias Computation

Denote δj(p̃) := p̃(tj)− p̃(tj−1) where p̃ is defined in (1) and εj := ηj − ηj−1 where ηj’s are
defined in A.II. Let

V̂n =
n∑

j=1

(δj(p̃))2,

where n is the number of observations in the trading interval [0, T ]. Then V̂n is taken as

the realized volatility estimator of the integrated volatility
∫ T

0
σ2(t)dt, henceforth denoted

by V . The realized volatility is a consistent estimator of integrated volatility in the hy-
pothesis that the prices are observed without measurement errors, but in practice, due to
market microstructure noise, sampling at the highest frequency leads to a bias problem
(see [Zhou, 1996]). Under the hypothesis that T

n
is the time distance between adjacent

logarithmic prices, it is easy to prove that the realized volatility estimator V̂n diverges as
the number n of observations increases and the bias is the following

E[V̂n − V ] = 2nE[η2]. (12)

The result (12) was established in [Bandi and Russell, 2005a, Zhang and al., 2005].
We consider the Fourier estimator defined in (8). The definition of the Fourier esti-

mator does not require evenly spaced data. Anyway for simplicity of computation, we will
suppose that the observations are equidistant in time and 2π

n
is the distance between two

observations, where [0, 2π] is the trading period. Then the bias is computed as follows.

Theorem 4.1 For any fixed integers n,N the following identity holds

E[σ̂2
n,N − V ] = 2n E[η2]

(
1 − 1

2N + 1

sin[(2N + 1)π
n
]

sin(π
n
)

)
. (13)

We analyze now the r.h.s of (13). Observe that if we impose the condition N2

n
→ 0,

we obtain

lim
n,N→∞

2n E[η2]

(
1 − 1

2N + 1

sin[(2N + 1)π
n
]

sin(π
n
)

)
= 0.

Therefore, if we consider a fixed number of observations n and we choose N “small” with
respect to n, the bias of the Fourier estimator is smaller than the bias of the realized
volatility; furthermore it goes to zero for n,N increasing at the proper rate.
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We can derive the following conclusion: the Fourier estimator is asymptotically un-
biased under the condition N2

n
goes to 0. Moreover the result (13) shows that for fixed n,

that is for a finite sample, with a suitable choice of N there is lower bias with respect to
the realized volatility estimator.

5 MSE Computation

In this section we compute the mean squared error (MSE) of the Fourier estimator con-
ditional on the volatility path. For simplicity, we will suppose that the volatility process
is independent of W , therefore we assume that the no leverage hypothesis holds (see
[Andersen, Bollerslev and Diebold, 2002] and [Meddahi, 2002] for a justification of the
no-leverage assumption in the literature).

In [Bandi and Russell, 2005a, Hansen and Lunde, 2006], under the hypothesis that
T
n

is the time distance between adjacent logarithmic prices, it is proved that the MSE of

the realized volatility estimator defined by V̂n =
∑n

j=1(δj(p̃))2, is the following

E[(V̂n − V )2] = 2
T

n
(Q + o(1)) + Λn, (14)

where Q is the so-called integrated quarticity
∫ T

0
σ4(s)ds, o(1) is a term which goes to

zero as n goes to infinity, and

Λn := n2α + nβ + γ,

with
α = (E[ε2])2, β = E[ε4] + 2E[ε2ε2

−1] − 3(E[ε2])2 (15)

γ = 4E[ε2]V − 2E[ε2ε2
−1] + 2(E[ε2])2.

We use the notation ε for ηj − ηj−1 for a generic j and ε−1 for ηj−1 − ηj−2 for the same j.
Easy computations show that under the assumption A.II the following identities hold

α = 4E[η2]2, β = 4E[η4], γ = 8E[η2]V + 2E[η2]2 − 2E[η4].

The following result contains the computation of the MSE of the Fourier volatility
estimator.

Theorem 5.1 For any fixed n,N the following relation holds

E[(σ̂2
n,N − V )2] = 2

2π

n
(Q + o(1)) + n2α̂ + nβ̂ + γ̂, (16)

where

α̂ = α (1 + D2
N(

2π

n
) − 2DN(

2π

n
));

β̂ = β (1 + D2
N(

2π

n
) − 2DN(

2π

n
));

γ̂ = γ + 4Q
2π

2N + 1
+ 4(E[η2]2 + E[η4])(2DN(

2π

n
) − D2

N(
2π

n
)) (17)

with α, β, γ as in (15) and DN(t) is the rescaled Dirichlet kernel defined in (10).
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Remark 5.2 It is worth noting that the terms α̂, β̂ and γ̂ depend only on the time gap
between two observations of the price, which here is assumed to be equal 2π

n
, and on the

number of Fourier coefficients. There is no dependence on the time period [0, 2π] under
consideration.

The above result needs some comments. Denote by MSERV and MSERV m the mean
squared error of the realized volatility estimator in the absence of microstructure noise
and in the presence of microstructure noise, respectively. We have

MSERV = 2
2π

n
(Q + o(1))

and
MSERV m = MSERV + n2α + nβ + γ.

Therefore it is clear that, in the absence of microstructure effects, the mean squared
error of the realized volatility estimator goes to zero as n → ∞, while in the presence of
microstructure effects the mean squared error of the realized volatility estimator diverges
as n → ∞, due to the presence of the terms of order n2 and n.

Analogously we make now the comparison of the mean squared error of the Fourier
estimator without microstructure noise, denoted by MSEF and with microstructure noise,
denoted by MSEFm. We have

MSEF = MSERV + c(n,N), (18)

where c(n,N) is a term which goes to zero as N,n go to infinity. In fact from the proof
of Theorem 5.1 it is easily seen that c(n,N) is equal to (39), therefore it is less or equal
than 4Q 2π

2N+1
. Moreover

MSEFm = MSEF + n2α̂(n,N) + nβ̂(n,N) + γ̃(n,N)

where

α̂(n,N) = 4[η2]2
(

1 + D2
N(

2π

n
) − 2DN(

2π

n
)

)
,

β̂(n,N) = 4E[η4]

(
1 + D2

N(
2π

n
) − 2DN(

2π

n
)

)
and

γ̃(n, N) = γ + 4(E[η2]2 + E[η4])(2DN(
2π

n
) − D2

N(
2π

n
)).

We note that if N2

n
→ 0 then

lim
n,N→∞

n2α̂(n,N) + nβ̂(n,N) = 0

and
lim

n,N→∞
γ̃(n,N) = 8E[η2]V + 2E[η4] + 6E[η2]2. (19)
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It follows that the mean squared error of the Fourier estimator does not diverge and it
is not significantly affected by microstructure noise, in fact choosing N conveniently we
obtain that MSEF and MSEFm differ about the positive constant term (19).

Finally we have proved that the Fourier estimator needs no correction in order to
be asymptotically unbiased and robust to market frictions of MA(1)-type. In the next
section we will see that the result extends to different types of microstructure noise.

6 The case with dependent noise

In this section we remove the Assumption A.III by considering the case when the noise
η is correlated with efficient returns δ(p). We consider a particular form of dependent
noise, more precisely we follow an example in [Hansen and Lunde, 2006] with market
microstructure noise that is time-dependent in tick time and correlated with efficient
returns.

Let t0 < t1 < . . . < tn be the times at which prices are observed and consider the case
where we sample intraday returns at the highest possible frequency in tick time. Suppose
that the noise is given by

η̃j := αδj(p) + ηj

where α is a real constant and η̃j and ηj are the shorten notation for η̃tj and ηtj . The case
α = 0 corresponds to the case with independent noise assumption. Let εj := ηj − ηj−1

and denote
ε̃j := α(δj(p) − δj−1(p)) + εj.

Then for any j we easily have

E[ε̃2
j ] = α2E[

∫ tj

tj−1

σ2(s)ds] + α2E[

∫ tj−1

tj−2

σ2(s)ds] + 2E[η2] (20)

and

E[ε̃jδj(p)] = αE[

∫ tj

tj−1

σ2(s)ds]. (21)

In [Hansen and Lunde, 2006] the bias of the realized volatility estimator in this setting is
computed as follows

E[V̂n − V ] = 2α2V + 2αV + 2n E[η2]. (22)

This bias can be negative if α < 0, which is actually in the case where η̃j and δj(p)
are negatively correlated. We consider now the Fourier estimator defined in (8) and we
compute the bias of the Fourier estimator in this case.

Proposition 6.1 For any integers n,N the following identity holds

E[σ̂2
n,N − V ] = (2α2V + 2αV + 2n E[η2])(1 − DN(

2π

n
)), (23)

where DN is defined in (10).

12



Again we observe that the bias can be negative if α < 0, but we also note that the bias
of the Fourier estimator goes to zero if n, N → ∞ and N2

n
→ 0 even in the presence of

dependent microstructure noise. Therefore the Fourier estimator turns out to be asymp-
totically unbiased under this kind of dependent microstructure noise. This result can be
extended to the case where η̃j and δj(p) are not only contemporaneously correlated, but
η̃j is correlated with lagged values of δj(p).

7 Monte Carlo simulations

In this section we simulate discrete data from a continuous time stochastic volatility
model with microstructure contaminations as in [Nielsen and Frederiksen, 2006]. From
the simulated data, Fourier estimates of the volatility can be compared to the value of the
true integrated variance. Consistently with the theoretical results of previous sections,
we show that when N = n/2 the Fourier estimator behaves like the realized volatility
estimator and it does indeed explode as the sampling interval goes to zero. Nevertheless,
both bias and MSE can be strongly reduced by choosing N conveniently and as N2

n
→ 0

the Fourier estimator turns out to be unbiased and the MSE converges to a small positive
constant.

The infinitesimal variation of the true log-price process and spot volatility is given
by the CIR square-root model [Cox et al., 1985]

dp(t) = σ(t) dW1(t)
dσ2(t) = α(β − σ2(t))dt + νσ(t) dW2(t),

(24)

where W1, W2 are independent Brownian motions. Moreover, we assume that the log-
arithmic noises η are i.i.d. Gaussian and independent from p; this is typical of bid-ask
bounce effects in the case of exchange rates and, to a lesser extent, in the case of equities.
Alternative, possibly discrete, distributions can be used to describe microstructure noise.
In [Nielsen and Frederiksen, 2006], for instance, a bid-ask bounce effect is described by an
order-driven indicator discrete variable. In our case, the contaminated process becomes

p̃(tj) = p(tj) + η(tj), η(tj) ∼ N(0, ξ2)

so that
δj(p̃) = δj(p) + εj,

where the εj follow a MA(1) process with negative first order autocorrelation. Since δj(p)
and εj are independent, the variance and covariance of contaminated returns can be easily
computed

var(δj(p̃)) =

∫ tj

tj−1

σ2(s)ds + 2ξ2, cov(δj(p̃), δj−1(p̃)) = −ξ2.

Hence, we notice that δj(p̃) exhibits spurious volatility and negative serial correlation as
a consequence of noise contamination.
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Figure 1: MSE plots as a function of the sampling period. ’-’ estimated MSE for σ̂2
n,N ; ’:’

true MSE for σ̂2
n,N ; ’- -’ estimated MSE for V̂n; ’-.’ true MSE for V̂n. Panel B is the same

graph as Panel A, plotted on a different scale. The true MSE plots overlap because for
N = n/2 the Fourier estimator behaves like the the realized volatility, i.e. they are both
inconsistent at high sampling frequencies.

In order to avoid other data manipulations such as interpolation or imputation
which might affect the numerical results, we generate (through simple Euler Monte Carlo
discretization) high frequency evenly sampled true and observed returns by simulating
second-by-second return and variance paths over a daily trading period of T = 6 hours,
for a total of 21600 observations per day. Then we sample the observations for different
choices of the uniform sampling interval ρ(n) = T/n so that we obtain different data sets
(tj, p̃(tj), j = 0, 1 . . . n) with σ recorded at every t. For instance, the choice n = 360
corresponds to a sampling period of ρ(360) = 1 minute. In implementing the Fourier
estimator σ̂2

n,N , the smallest wavelength that can be evaluated in order to avoid aliasing
effects is twice the smallest distance between two consecutive prices, which yields N ≤ n/2
(Nyquist frequency). For 1 minute returns, it corresponds to N ≤ 180.

Figure 1 shows the performance of the Fourier estimator σ̂2
n,N and of the realized

volatility V̂n in terms of MSE as a function of the sampling period. For each estimator,
the true and the estimated MSEs are plotted. In the true MSE, the value V is obtained
from σ by numerical integration. The estimated MSE is computed by (16) for σ̂2

n,N and

by (14) for V̂n. In particular, for each sampling frequency, N is taken equal to n/2. The
practical calculation hinges on the estimation of the relevant noise moments as well as on
the preliminary identification of V and Q. Since the noise moments do not vary across
frequencies under the MA(1) model, in computing the MSE estimates we use sample
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moments constructed using quote-to-quote return data in order to estimate the relevant
population moments of the noise components according to [Bandi and Russell, 2005a]

E[ε2] = E

[
1

n

n∑
j=1

(δj(p̃))2

]
− V

n
,

E[ε4] = E

[
1

n

n∑
j=1

(δj(p̃))4

]
− 6E[ε2]V

n
+ O

(
1

n2

)
,

E[ε2ε2
−1] = E

[
1

n − 1

n∑
j=2

(δj(p̃))2(δj−1(p̃))2

]
− 2E[ε2]V

n − 1
+ O

(
1

n(n − 1)

)
+ O

(
1

n2

)
.

These relations, together with the estimates of Sections 4 and 5 allow to measure the bias
and MSE of the volatility estimators also in the case of empirical market quote data, where
the efficient price and volatility and the noise contaminations are not available. Other
possible estimators of these quantities are discussed in [Barndorff-Nielsen and al., 2006a],
although the statistical gains are minor. Preliminary estimates of V and Q are obtained
by computing σ̂2

n,N , V̂n and the estimator Q̂ = n
6π

∑n
j=1(δj(p̃))4 for the integrated quar-

ticity using 2-minute returns. In the Fourier transform context, a suitable estimate of
the integrated quarticity can be derived; nevertheless, the use of such an estimate in-
stead of realized integrated quarticity does not affect much the numerical results. The
parameter values used in the simulations are taken from the unpublished Appendix to
[Bandi and Russell, 2005a] and reflect the features of IBM time series: α = 0.01, β = 1.0,
ν = 0.05, ξ = 0.000142. The initial value of σ2 is set equal to one, while p(0) = log 100.
The simulations are run for 500 daily replications, using the computer language Matlab.
While in the absence of microstructure noise the MSE decreases as the sampling fre-
quency increases, this is no longer true when microstructure effects are introduced (Fig.
1, Panel A). In agreement with the theoretical results, the sharp spike as ρ approaches
zero shows that both the realized variance and the Fourier estimator with N = n/2 cannot
be consistent estimates of the integrated variance of the underlying log price process in
the presence of microstructure noise. Panel B is the same graph as Panel A, plotted on a
different scale. The minimum of the true MSE for both estimators is 0.0022 attained for
3.82 minute returns.

As a matter of fact, when analyzing high frequency time series the diffusion model (24)
does not hold for small time steps and microstructure effects can affect the computation
of the Fourier coefficients. This is shown in Figure 2, where the average σ̂2

n,N is plotted
as a function of the highest frequency N employed in the Fourier expansion, when all
the observations are used (n = 21600). As remarked in [Barucci and Renò, 2002], if dp̃(t)
was normally distributed then, as N increases, the plot should tend to the fixed (and
known) average integrated variance value (i.e. 0.2499). This is not the case: for a frequency
larger than a certain value (denoted by Ncut) the Fourier coefficients tend to increase
inconsistently, as a consequence of the negative serial correlation of the contaminated
returns. In our setting, this happens approximately for Ncut = 90, which corresponds
roughly to a time step of 6 · 60/(2Ncut) = 2 min.
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Figure 2: Average σ̂2
n,N as a function of the highest frequency N employed in the Fourier

expansion and n = 21600 (quote-to-quote returns).

This suggests to cut the highest frequencies in the computation of the integrated
volatility, i.e. we compute the Fourier expansion for N = min(n/2, Ncut) when n grows
too high, i.e. for high frequency data. Moreover, from the theoretical results of sections 4
and 5, this cutting procedure should result in a smaller bias and MSE of the Fourier esti-
mator and, ultimately, it should provide “near” consistency of σ̂2

n,N as N2

n
→ 0. Figure 3,

Panel A, shows the true (dotted line) and estimated (solid line) mean integrated volatil-
ity across the 500 daily replications, obtained with the truncated (Ncut = 90) Fourier
estimator for various sampling intervals ranging from 1 second to 5 minutes. Panels B
and C show the true (dotted line) and estimated (solid line) bias and MSE respectively.
We can see that now, when the sampling interval becomes smaller than 2 minutes, both
the bias and the MSE start to decrease monotonically as a result of the cutting pro-
cedure. The minimum bias and MSE are then attained for quote-to-quote returns. As
noticed in [Nielsen and Frederiksen, 2006], this behavior of the Fourier estimator can be
attributed to the decomposition of the integrated variance into components of varying
frequencies. That is, cutting the highest frequencies in the Fourier expansion implies that
high-frequency noise or short-run noise is ignored by the estimator. Hence, by choosing
a smaller number of low frequency ordinates to be used for estimation, i.e. by choosing
Ncut small, it is in principle possible to render the Fourier estimator invariant to short-run
noise introduced by market microstructure effects.

Figure 4, Panel A, shows the true (dotted line) and estimated bias as a function of
the sampling interval for different values of Ncut. All the plots coincide for large sampling
interval and start to separate from each other for the time step corresponding to the
cutting frequency, i.e. for Δt = 6 · 60/(2Ncut). Moreover, as the cutting frequency Ncut

is reduced then the Fourier estimator is characterized by smaller bias for every choice
of the sampling interval, with the minimum attained for quote-to-quote returns where
the estimator is almost unbiased. On the contrary, the MSE (Panel B) shows a more
complicated behavior: as the cutting frequency Ncut is reduced from 360 to 90, the MSE
is reduced as well for every choice of the sampling interval; however, further reduction of
Ncut results in a larger MSE, especially for very high frequency data. This is due to the
O((2N + 1)−1) term in (17).

The cutting procedure has good effects on the performance of the Fourier estimator
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Figure 3: Panel A: true (:) and estimated (-) mean integrated volatility for Ncut = 90
and various sampling intervals. Panels B and C: true (:) and estimated (-) bias and MSE
respectively.

also in terms of the following relative error statistics

μ = E

[
σ̂2

n,N − V

V

]
, RMSE =

{
E

[(
σ̂2

n,N − V

V

)2
]}1/2

,

which can be interpreted as relative bias and root mean squared error of the estimator.
These are precisely the statistics considered in [Barucci and Renò, 2002] and [Nielsen and Frederiksen, 20
Figure 5 shows the distribution of the relative error (σ̂2

n,N − V )/V in the case of a sam-
pling frequency equal to 3.82 min and in the case of quote-to-quote returns. The latter is
characterized by a smaller mean and standard deviation. Here Ncut is taken equal to 90.

The analysis above suggests to use quote-to-quote returns and try to minimize MSE
as a function of the cutting frequency Ncut. This minimization over the integer variable
Ncut can be performed easily by comparison of the computed MSE values. This is done in
Fig 6, where the true and estimated bias and MSE of the Fourier estimator are plotted
as a function of the number of the Fourier coefficients. The minimum of the true MSE
is 2.88e-4 and is attained for Ncut = 264 which, at least theoretically, corresponds to a
sampling frequency of 6 · 60/(2 · 264) = 0.68 min, much higher than the value in Fig.
1. Nevertheless, we note this does not correspond either to the minimum bias or to the
minimum mean and std values of the relative error. In particular, from Table 1 we can
see that as the cutting frequency is decreased (yet kept over a suitable level) the mean
percentage error of the Fourier estimator decreases, while its standard deviation increases.
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Figure 6: True (:) and estimated (-) bias and MSE of the Fourier estimator as a function
of the number of the Fourier coefficients. Quote-to-quote returns.

Ncut 60 120 180 240 300 360 420 480 540 600 660
σ̂2

n,N 0.2512 0.2528 0.2539 0.2559 0.2587 0.2617 0.2658 0.2707 0.2757 0.2816 0.2881

μ 0.0054 0.0119 0.0160 0.0241 0.0355 0.0474 0.0639 0.0833 0.1034 0.1271 0.1532
std 0.1290 0.0881 0.0720 0.0640 0.0595 0.0550 0.0524 0.0494 0.0462 0.0456 0.0435

RMSE 0.1290 0.0888 0.0737 0.0684 0.0693 0.0726 0.0826 0.0969 0.1132 0.1350 0.1592

Table 1: Fourier integrated variance and other relative error statistics for different values
of Ncut. True integrated variance V = 0.2499.

From these considerations, we can conclude that the optimal sampling frequency must
account for both the bias and the variance of the sampling error through the minimization
of the MSE, which is a combination of the two.

In Figure 7 we show the estimated bias and MSE as a function of both the sampling
interval ρ ranging from 1 sec to 3 min and the cutting frequency Ncut ranging from 0 to
330. Again, the minimum of the estimated MSE is 4.69e-004 and is attained for quote-
to-quote data (ρ = 1 sec) and Ncut = 240 which, at least theoretically, corresponds to
a sampling frequency of 6 · 60/(2 · 240) = 0.75 min. At this frequency, the true MSE is
2.92e-004.

Finally, in order to understand more deeply from an empirical point of view how
the Fourier estimator relates to the other estimators that have been specifically pro-
posed to handle the microstructure noise, we consider the flat-top realized kernels by
[Barndorff-Nielsen and al., 2006a], [Barndorff-Nielsen and al., 2006b] with kernels of Bartlett,
Cubic and TH2 type, the two-scale estimator by [Zhang and al., 2005] and the bias cor-
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Figure 7: Estimated bias and MSE of the Fourier estimator as a function of the sampling
frequency and of the number of the Fourier coefficients.

rected estimator by [Hansen and Lunde, 2006]. The realized kernels may be considered
as unbiased corrections of the realized volatility by means of the first H autocovariances
of the returns, while the two-scale (subsampling) estimator is a bias-adjusted average
of lower frequency realized volatilities computed on S non-overlapping observation sub-
grids. In particular, when H is selected to be zero the realized kernels become the re-
alized volatility. Finite sample MSE optimal rules for these estimators are considered in
[Bandi and Russell, 2006b]. In our analysis, we differentiate from their study in that the
optimal MSE-based estimators are designed relying on the true MSE. The comparative
analysis of these methods is shown in Tables 2 and 3. The Fourier estimators with Dirich-
let (DIR) or Fejer (FEJ) kernels are optimally designed in order to minimize the true
MSE with respect to the number of Fourier coefficients N for a given sampling interval
ρ = 1 sec, 30 sec, 1 min, 5 min. The realized kernels are optimized according to the
same criterion with respect to the number of autocovariances H and the two-scale ZMA
estimator with respect to the number of subgrids S.

We notice that, at a sampling frequency of 5 min the effects of microstructure noise
are not evident. Therefore, the optimal MSE-based value of the parameter H is auto-
matically selected to be zero and the realized kernels become the realized volatility. The
optimal MSE-based two-scale ZMA estimator exhibits a larger MSE and negative bias,
while the HL estimator shows a slightly larger MSE and a very small bias. Both the Fourier
estimators perform comparably and, in particular, the FEJ kernel allows for smaller MSE
and bias. At 1 min frequency, the noise induced autocorrelation of returns becomes effec-
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MSE BIAS
1 sec 30 sec 1 min 5 min 1 sec 30 sec 1 min 5 min

Fourier DIR 2.88e-4 1.11e-3 1.51e-3 2.31e-3 7.04e-3 1.67e-2 1.49e-2 1.52e-2
Fourier FEJ 2.53e-4 9.64e-4 1.28e-3 2.05e-3 6.79e-3 1.29e-2 1.44e-2 7.41e-3
Bartlett Kernel 9.18e-5 7.50e-4 1.34e-3 2.32e-3 5.96e-4 -2.76e-4 1.56e-4 1.52e-2
Cubic Kernel 9.93e-5 7.50e-4 1.34e-3 2.32e-3 7.47e-4 -2.76e-4 1.56e-4 1.52e-2
TH2 Kernel 8.99e-5 7.27e-4 1.26e-3 2.32e-3 6.26e-4 -2.56e-4 6.39e-5 1.52e-2
Two-scale ZMA 1.82e-4 2.00e-3 3.24e-3 9.31e-3 -6.45e-3 -2.75e-2 -3.64e-2 -6.47e-2
Real. Vol. HL 3.43e-3 9.24e-4 1.34e-3 5.51e-3 -3.55e-4 -4.49e-4 1.56e-4 -3.70e-3
Real. Vol. 3.76e+1 4.12e-2 1.13e-2 2.32e-3 6.13e+0 2.01e-1 1.03e-1 1.52e-2

Table 2: Comparison of optimized integrated volatility estimators.

Optimal MSE-based parameter values for N, H, S
1 sec 30 sec 1 min 5 min 1 sec 30 sec 1 min 5 min

Fourier DIR 264 79 53 35 Bartlett Kernel 13 2 1 0
Fourier FEJ 386 107 84 50 Cubic Kernel 14 2 1 0
Two-scale ZMA 37 10 8 5 TH2 Kernel 19 3 2 0

Table 3: Optimal MSE-based parameter values for N, H, S. When H is selected to be zero
the realized kernels become the realized volatility.

tive and the realized volatility starts to strongly overestimates the underlying integrated
volatility. In this setting, the optimal MSE-based values for H are 1 for the Bartlett and
Cubic kernels and 2 for the TH2 kernel. This correction results in a smaller MSE and
negligible bias. Identical performance is obtained with the HL estimator, while the two-
scale ZMA shows a larger MSE and negative bias. Both the optimal MSE-based Fourier
estimators perform very well in terms of MSE, while having only a slightly higher bias.
At higher sampling frequencies the impact from market microstructure effects becomes
more evident and the realized volatility becomes progressively unstable. At the highest
frequency, the realized kernels provide the best estimate both in terms of MSE and of bias.
Moreover, as already observed in the literature, the finite sample performance of the cubic
and Bartlett kernels is virtually identical and the Bartlett kernel is slightly preferable at
1 sec frequency. The smooth TH2 kernel provides the best volatility estimate and tends
to select more lags than the others. Very strikingly, for all the sampling frequencies the
optimally designed Fourier estimators provide very good results and are practically unaf-
fected by noise, having only a slightly higher MSE for quote-to-quote returns. Notice that
the use of the FEJ kernel allows to slightly improve the behavior of the Fourier estimator
for very high frequencies. Hence, the Fourier method remains a very attractive estimator
even in comparison with methods specifically designed to handle market microstructure
contaminations. More specifically, the Fourier estimator is competitive in terms of MSE
for sampling frequencies up to 30 sec, while having only a slightly higher bias.
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Figure 8: Estimated conditional bias and MSE of the RV estimator and of the Fourier
estimator without truncation and with Ncut = 301, as a function of the sampling interval.

8 Empirical analysis

We analyze quote-to-quote logarithmic prices of the Italian stock index futures, named
FIB30, for the period January 11, 2000 to January 31, 2001, for a total of 269 trading
days. We use only the prices of the next-to-expiration contracts, which are the most liquid
ones, with the FIB30 expiring quarterly. This time series is part of the data set used by
[Bianco and Renò, 2006]. The advantage of using the futures is that it is a traded asset
and, moreover, the stock index futures is always more liquid than the portfolio which
constitutes the index.

Quotes prior to 10 a. m. are removed to eliminate opening quotes from our sample.
We have a total of 1514523 quotes over the period and on average a new quote arrives
every 5.67 seconds. We construct 10-seconds continuously-compounded log-returns. The
smallest return is -0.29% and the largest is 0.30%. The first-order autocorrelation is signif-
icantly negative and equal to -0.1518; the second autocorrelation is 0.0144 and the third is
0.0095, with 95% confidence interval [−0.0485, 0.0485]. Thus, the MA(1) approximation
seems to capture the main economic effects in the data.

Since the requirement of evenly spaced data is not essential for both estimators, we
construct intraday returns using a sort of tick time sampling scheme [Hansen and Lunde, 2006],
where the tj’s are chosen to be the time of the first transaction occurring a fixed period,
say 2 minutes, after the previous one. Alternative sampling schemes, such as calendar
time sampling combined with an interpolation or imputation procedure would give the
same qualitative results, eventually introducing further sources of noise. In Fig. 8 we plot
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the estimated conditional MSE and bias of the RV estimator and of the Fourier estima-
tor without truncation and with Ncut = 301 as a function of the sampling interval. The
chosen value for Ncut is the optimal cutting frequency for quote-to-quote returns, i.e. the
one which minimizes the MSE. The MSE’s are estimated using the methods discussed in
Section 5, with the sample moments constructed using quote-to-quote returns to consis-
tently estimate the moments of the noise. Preliminary estimates of V and Q are obtained
using 15-minute returns. The minimum of the MSE for the RV estimator is 6.28e-010
attained at 1.8 minutes, while the minimum of the MSE for the Fourier estimator without
truncation is 7.13e-010 at 1.66 minutes. Nevertheless, we see that the curve for the Fourier
estimator with Ncut = 301 reaches the smallest MSE for quote-to-quote returns. The cor-
responding integrated volatility estimates are 0.1205e-3 for the optimal Fourier estimator
without truncation and 0.12155e-3 for the optimal Fourier estimator with Ncut = 301
and quote-to-quote returns. Therefore, as suggested by our theory, by choosing a suitable
Ncut it is possible to render the Fourier estimator invariant to short-run noise introduced
by market microstructure effects, with consequent efficiency gains. Moreover, since our
theoretical results and our simulations indicate that the RV estimator is more biased than
the Fourier estimator in the presence of market microstructure noise, the fact that the
optimal RV estimate is 0.12139e-3 and that RV estimates for commonly used sampling
frequencies (e.g. 13 minutes) are 0.1205e-3 indicates that the actual volatility might be
higher on average than predicted by the much used realized volatility, as already noticed
in [Nielsen and Frederiksen, 2006].

9 Conclusions

In this paper we have studied the finite sample properties of the Fourier estimator of
integrated volatility in the presence of market microstructure noise, both in the case of
independent noise as in the case where the noise is correlated with the efficient returns. We
find that the Fourier estimator is almost unbiased; in fact, even if we do not proceed to any
bias correction of the estimator, we prove that the bias of a finite sample can be made
negligible by a suitable cutting of the highest frequencies. Moreover we prove that the
mean squared error of the Fourier estimator is substantially unaffected by the presence of
microstructure noise by choosing in an appropriate way the number of Fourier coefficients
to be included in the estimation, as indicated explicitly by the mean squared error compu-
tation. These properties prove the effectiveness of the Fourier estimator of volatility even
in the presence of different type of microstructure noise effects. The theoretical results are
confirmed by a careful empirical analysis, which suggests as a rule for building efficient
Fourir estimators to use quote-to-quote returns and minimize the estimated MSE as a
function of the cutting frequency Ncut. This minimization over the integer variable Ncut

can be performed easily and with no computational effort by comparison of the computed
MSE values.
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11 Appendix: Proofs

Proof. (of Theorem 4.1) By the definitions of Fourier estimator and realized volatility
estimator, using (12) and the following identities

E[δj(p)δj′(p)] = 0 if j 	= j′

E[εjεj′ ] = −E[η2] if |j′ − j| = 1

E[εjεj′ ] = 0 if |j′ − j| > 1

E[δj(p)εj′ ] = 0,

we easily get

E[σ̂2
n,N − V ] = (25)

= E[V̂n − V ] + 2E[
n∑

j′=1

j′−1∑
j=1

1

2N + 1

∑
|s|≤N

eis(tj−tj′ )(δj(p)δj′(p) + εjεj′ + δj(p)εj′)](26)

= 2nE[η2] + 2
1

2N + 1

n∑
j′=1

∑
|s|≤N

eis 2π
n E[εj′εj′−1] (27)

= 2nE[η2] − 2n
1

2N + 1

∑
|s|≤N

eis 2π
n E[η2] (28)

= 2n E[η2]

(
1 − 1

2N + 1

sin[(2N + 1)π
n
]

sin(π
n
)

)
. � (29)

Proof. (of Theorem 5.1) We introduce the following notation

MiX := 2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′) (δj(p)δj′(p) + εjεj′ + 2δj(p)εj′) (30)
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and

DN(t) :=
1

2N + 1

∑
|s|≤N

eist.

With these notations we expand the MSE of σ̂2
n,N and we obtain:

E[(σ̂2
n,N − V )2] = E[(V̂n − V )2] + E[(MiX)2 + 2MiX(V̂n − V )]. (31)

In virtue of (14) the first addendum in (31) is equal to

2
2π

n
(Q + o(1)) + n2α + nβ + γ (32)

where
α := 4(E[η2])2, β := 4E[η4]

γ := 8E[η2]V + 2E[η2]2 − 2E[η4].

Therefore we have to compute

E[(MiX)2] + 2E[MiX(V̂n − V )].

Let us consider now the first term

E[(MiX)2] = E[(2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)δj(p)δj′(p))2] (33)

+E[(2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)εjεj′)
2] (34)

+E[2(
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)2δj(p)εj′)
2] (35)

+4E[
n∑

j′=2

j′−1∑
j=1

∑
i′ �=j′

∑
i<i′

DN(tj − tj′)DN(ti − ti′)δj(p)δj′(p)εiεi′ ] (36)

+4E[
n∑

j′=2

j′−1∑
j=1

∑
i′ �=j′

∑
i<i′

DN(tj − tj′)DN(ti − ti′)δj(p)δj′(p)δi(p)εi′ ] (37)

+4E[
n∑

j′=2

j′−1∑
j=1

∑
i′ �=j′

∑
i<i′

DN(tj − tj′)DN(ti − ti′)εjεj′δi(p)εi′ ]. (38)

We note that the terms (36), (37) and (38) are zero in virtue of the Assumption
A.III. We start with the term (33). We have

4E[(
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)δj(p)δj′(p))2] (39)
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= 4
n∑

j′=2

j′−1∑
j=1

D2
N(tj − tj′)

∫ tj

tj−1

σ2(s)ds

∫ tj′

tj′−1

σ2(s)ds ≤ 2π

2N + 1
4Q, (40)

being Q the integrated quarticity. We consider now the term (34):

E[(2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)εjεj′)
2] = 4E[

n∑
j′=2

j′−1∑
j=1

D2
N(tj − tj′)ε

2
jε

2
j′ ] (41)

+4E[
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)εj′εj

n∑
i′=2
i′ �=j′

i′−1∑
i=1

DN(ti − ti′)εiεi′ ] (42)

= 4
n∑

j′=3

j′−2∑
j=1

D2
N(tj − tj′)E[ε2

j′ε
2
j ] + 4

n∑
j′=2

D2
N(

2π

n
)E[ε2

j′ε
2
j′−1] (43)

+8
n∑

j′=3

j′−2∑
j=1

DN(tj − tj′)DN(tj − tj′−1)E[ε2
jεj′εj′−1] (44)

+4
n−1∑
j=2

D2
N(

2π

n
)E[ε2

jεj−1εj+1] + 8
n∑

j=4

j−2∑
i=2

D2
N(

2π

n
)E[εjεj−1εiεi−1] (45)

= 4D2
N(

2π

n
)(n − 1)(3E[η2]2 + E[η4]) + 4D2

N(
2π

n
)(n2 − 5n + 6)E[η2]2 (46)

+8D2
N(

2π

n
)(n − 2)E[η2]2 + o(1) (47)

= 4E[η2]2D2
N(

2π

n
)(n2 − 1) + 4E[η4]D2

N(
2π

n
)(n − 1) + o(1) (48)

We consider now the term (35):

E[(2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)2δj(p)εj′)
2] = (49)

= 16
n∑

j′=2

j′−1∑
j=1

D2
N(tj−tj′)E[δj(p)2ε2

j′ ]+16
n∑

j′=3

j′−2∑
j=1

DN(tj−tj′)DN(tj−tj′−1)E[δj(p)2εj′εj′−1]

= 16
n∑

j′=3

j′−2∑
j=1

D2
N(tj − tj′)E[δj(p)2](2E[η2] − 2E[η2]) + o(1).

This concludes the computation of E[(MiX)2]. Now we turn to

2E[MiX (V̂n − V )]. (50)

The term (50) is equal to

2E[MiX

(
n∑

j=1

δj(p)2 − V

)
] + 2E[MiX (

n∑
j=1

ε2
j + 2

∑
j′

∑
j<j′

δj(p)εj′)]. (51)
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Notice that the first addendum in (51), which is equal to

2E[(2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′) (δj(p)δj′(p) + εjεj′ + 2δj(p)εj′)

(
V −

n∑
i=1

δi(p)2

)
]

is zero in virtue of the assumption A.III and the fact that

E[V −
n∑

j=1

δj(p)2] = 0.

Consider now the second addendum in (51). In virtue of the Assumption A.III, with a
computation similar to (49), this term reduces to

2E[2
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)εjεj′ (
n∑

i=1

ε2
i )] (52)

+2E[4
n∑

j′=2

j′−1∑
j=1

DN(tj − tj′)δj(p)εj′ (2
∑

j′

∑
j<j′

δj(p)εj′)] (53)

= 4DN(
2π

n
)(2

n−1∑
j=2

E[εjεj+1

j−1∑
i=1

ε2
i ] + 4DN(

2π

n
)2

n−1∑
j=1

E[ε3
j−1εj] (54)

+8
n∑

j′=3

j′−2∑
j=1

DN(tj − tj′)E[δj(p)2]E[ε2
j′ + 2εj′εj′−1] + o(1) (55)

= −8DN(
2π

n
)(n2 − 3n + 2)E[η2]2 − 8DN(

2π

n
)(n − 1)(3E[η2]2 + E[η4]) + o(1).(56)

Finally we have

RMSE = 2
2π

n
(Q + op(1)) + n2α̂ + nβ̂ + γ̂ (57)

where

α̂ = 4[η2]2
(

1 + D2
N(

2π

n
) − 2DN(

2π

n
)

)
;

β̂ = 4E[η4]

(
1 + D2

N(
2π

n
) − 2DN(

2π

n
)

)
;

γ̂ = γ + 4Q
2π

2N + 1
+ 4(E[η2]2 + E[η4])(2DN(

2π

n
) − D2

N(
2π

n
)).

The proof is completed. �

Proof. (of Proposition 6.1) We split the computation as follows

E[σ̂2
n,N − V ] = E[V̂n − V ] + 2E[

n∑
j′=1

∑
j<j′

DN(tj − tj′)δj(p̃)δj′(p̃)].
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As showed in [Hansen and Lunde, 2006], firstly we have

E[V̂n − V ] = E[
n∑

j=1

(δj(p))2 + ε̃2
j + 2δj(p)ε̃j − V ]

= V +
n∑

j=1

α2E[(δj(p))2] +
n∑

j=1

α2E[(δj−1(p))2] + 2nE[η2] + 2α
n∑

j=1

E[(δj(p))2] − V

= (2α2 + 2α)V + 2nE[η2].

Secondly we have

2E[
n∑

j′=1

∑
j<j′

DN(tj − tj′)δj(p̃)δj′(p̃)] = DN(
2π

n
)

n∑
j=1

E[ε̃jδj−1(p)] + E[ε̃j ε̃j−1]. (58)

It is easily seen that
E[ε̃j ε̃j−1] = −α2E[(δj−1(p))2] − E[η2]

and
E[ε̃jδj−1(p)] = −αE[(δj−1(p))2]

Therefore (58) is equal to

2DN(
2π

n
)

n∑
j=1

(−αE[

∫ tj−1

tj−2

σ2(s)ds] − α2E[

∫ tj−1

tj−2

σ2(s)ds] − E[η2])

= −2αDN(
2π

n
)V − 2α2DN(

2π

n
)V − 2nDN(

2π

n
)E[η2].

Finally the bias of the Fourier estimator becomes

2α2V (1 − DN(
2π

n
)) + 2αV (1 − DN(

2π

n
)) − 2nE[η2](1 − DN(

2π

n
)). �
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